2024 Volume 33 Issue 8
Article Contents

Saqib Nawaz Khan1, 2, 3, Yan Wang(王燕)4, Lixiang Zhong(钟李祥)5, Huili Liang(梁会力)1, 2, Xiaolong Du(杜小龙)1, 2, 3, and Zengxia Mei(梅增霞)1, 2, †. 2024: Effect of Lewis acid-base additive on lead-free Cs2SnI6 thin film prepared by direct solution coating process, Chinese Physics B, 33(8): 087201. doi: 10.1088/1674-1056/ad4a39
Citation: Saqib Nawaz Khan1, 2, 3, Yan Wang(王燕)4, Lixiang Zhong(钟李祥)5, Huili Liang(梁会力)1, 2, Xiaolong Du(杜小龙)1, 2, 3, and Zengxia Mei(梅增霞)1, 2, †. 2024: Effect of Lewis acid-base additive on lead-free Cs2SnI6 thin film prepared by direct solution coating process, Chinese Physics B, 33(8): 087201. doi: 10.1088/1674-1056/ad4a39

Effect of Lewis acid-base additive on lead-free Cs2SnI6 thin film prepared by direct solution coating process

  • Received Date: 01/03/2024
    Accepted Date: 30/04/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12174275, 62174113, 61874139, 61904201, and 11875088) and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019B1515120057).

  • Inorganic Cs$_{2}$SnI$_{6}$ perovskite has exhibited substantial potential for light harvesting due to its exceptional optoelectronic properties and remarkable stability in ambient conditions. The charge transport characteristics within perovskite films are subject to modulation by various factors, including crystalline orientation, morphology, and crystalline quality. Achieving preferred crystalline orientation and film morphology via a solution-based process is challenging for Cs$_{2}$SnI$_{6}$ films. In this work, we employed thiourea as an additive to optimize crystal orientation, enhance film morphology, promote crystallization, and achieve phase purity. Thiourea lowers the surface energy of the (222) plane along the $\langle 111\rangle$ direction, confirmed by x-ray diffraction, x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy studies, and density functional theory calculations. Varying thiourea concentration enables a bandgap tuning of Cs$_{2}$SnI$_{6}$ from 1.52 eV to 1.07 eV. This approach provides a novel method for utilizing Cs$_{2}$SnI$_{6}$ films in high-performance optoelectronic devices.
  • 加载中
  • Guo F, Lu Z, Mohanty D, Wang T, Bhat I B, Zhang S, Shi S, Washington M A, Wang G C and Lu T M 2017 Mater. Res. Lett. 5 540

    Google Scholar Pub Med

    Kapil G, Ohta T, Koyanagi T, Vigneshwaran M, Zhang Y, Ogomi Y, Pandey S S, Yoshino K, Shen Q, Toyoda T, Rahman M M, Minemoto T, Murakami T N, Segawa H and Hayase S 2017 J. Phys. Chem. C 121 13092

    Google Scholar Pub Med

    Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, Ye Q, Wang H, Zeng H, Liu J and Kanatzidis M G 2017 Sol. Energy Mater. Sol. Cells 159 227

    Google Scholar Pub Med

    Ullah S, Wang J, Yang P, Liu L, Khan J, Yang S E, Xia T, Guo H and Chen Y 2021 Sol. RRL 5 2000830

    Google Scholar Pub Med

    Yang X, Wang Y, Jiang J, Li M, Tang Z, Cai H, Zhang F and Wu X 2020 APL Mater. 8 021102

    Google Scholar Pub Med

    Dang T C, Le H C, Pham D L, Nguyen S H, Nguyen T T O, Nguyen T T and Nguyen T D 2019 J. Alloys Compd. 805 847

    Google Scholar Pub Med

    Huang J, Dong C, Mei Y, Lu X, Yue G, Gao Y, Liu R, Zhang W and Tan F 2021 J. Mater. Chem. C 9 14217

    Google Scholar Pub Med

    Lee B, Krenselewski A, Baik S I, Seidman D N and Chang R P H 2017 Sustain. Energy & Fuels 1 710

    Google Scholar Pub Med

    Liu A, Zhu H, Reo Y, Kim M G, Chu H Y, Lim J H, Kim H J, Ning W, Bai S and Noh Y Y 2022 Cell Rep. Phys. Sci. 3 100812

    Google Scholar Pub Med

    Niu G, Yu H, Li J, Wang D and Wang L 2016 Nano Energy 27 87

    Google Scholar Pub Med

    Zhang G, Zhang J, Liao Y, Pan Z, Rao H and Zhong X 2022 Chem. Eng. J. 440 135710

    Google Scholar Pub Med

    Zhang Y, Ma Y, Wang Y, Zhang X, Zuo C, Shen L and Ding L 2021 Adv. Mater. 33 e200669

    Google Scholar Pub Med

    Han X, Liang J, Yang J H, Soni K, Fang Q, Wang W, Zhang J, Jia S, Martí A A, Zhao Y and Lou J 2019 Small 15 1901650

    Google Scholar Pub Med

    Krishnaiah M, Kim S, Kumar A, Mishra D, Seo S G and Jin S H 2022 Adv. Mater. 34 2109673

    Google Scholar Pub Med

    Nairui X, Yehua T, Yali Q, Duoduo L and Ke-Fan W 2020 Sol. Energy 204 429

    Google Scholar Pub Med

    Shao D, Zhu W, Xin G, Liu X, Wang T, Shi S, Lian J and Sawyer S 2020 J. Mat. Chem. C 8 1819

    Google Scholar Pub Med

    Wang A, Yan X, Zhang M, Sun S, Yang M, Shen W, Pan X, Wang P and Deng Z 2016 Chem. Mater. 28 8132

    Google Scholar Pub Med

    Kumar J, Srivastava P and Bag M 2022 Front. Chem. 10 842924

    Google Scholar Pub Med

    Zheng D, Raffin F, Volovitch P and Pauporté T 2022 Nat. Commun. 13 6655

    Google Scholar Pub Med

    Konstantakou M, Perganti D, Falaras P and Stergiopoulos T 2017 Crystals 7 291

    Google Scholar Pub Med

    Yan Y, Yang Y, Liang M, Abdellah M, Pullerits T, Zheng K and Liang Z 2021 Nat. Commun. 12 6603

    Google Scholar Pub Med

    Hsieh C M, Liao Y S, Lin Y R, Chen C P, Tsai C M, Wei-Guang Diau E and Chuang S C 2018 RSC Adv. 8 19610

    Google Scholar Pub Med

    Ko S G, Ryu G I, Kim B, Cha G J, Ri J H, Sonu G S and Kim U C 2019 Sol. Energy Mater. Sol. Cells 196 105

    Google Scholar Pub Med

    Wang S, Ma Z, Liu B, Wu W, Zhu Y, Ma R and Wang C 2018 Sol. RRL 2 1800034

    Google Scholar Pub Med

    Yu S K, Xu N N, Jiang M, Weng Y G, Zhu Q Y and Dai J 2020 Inorg. Chem. 59 15842

    Google Scholar Pub Med

    Aming L and Yiyang S 2021 J. Inorg. Mater. 37 691

    Google Scholar Pub Med

    Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Blochl P E 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104

    Google Scholar Pub Med

    Matussin S N, Rahman A and Khan M M 2022 Front. Chem. 10 881518

    Google Scholar Pub Med

    Wu B, Yuan H, Xu Q, Steele J A, Giovanni D, Puech P, Fu J, Ng Y F, Jamaludin N F, Solanki A, Mhaisalkar S, Mathews N, Roeffaers M B J, Grätzel M, Hofkens J and Sum T C 2019 Nat. Commun. 10 484

    Google Scholar Pub Med

    Ye S, Rao H, Zhao Z, Zhang L, Bao H, Sun W, Li Y, Gu F, Wang J, Liu Z, Bian Z and Huang C 2017 J. Am. Chem. Soc. 139 7504

    Google Scholar Pub Med

    Singh A, Najman S, Mohapatra A, Lu Y J, Hanmandlu C, Pao C W, Chen Y F, Lai C S and Chu C W 2020 ACS App. Mater. Interfaces 12 32649

    Google Scholar Pub Med

    Chen C, Li F, Zhu L, Shen Z, Weng Y, Lou Q, Tan F, Yue G, Huang Q and Wang M 2020 Nano Energy 68 104313

    Google Scholar Pub Med

    Wu Z, Jiang M, Liu Z, Jamshaid A, Ono L K and Qi Y 2020 Adv. Energy Mater. 10 1903696

    Google Scholar Pub Med

    Chen Q, Wang C, Li Y and Chen L 2020 J. Am. Chem. Soc. 142 18281

    Google Scholar Pub Med

    Mao L, Kennard R M, Traore B, Ke W, Katan C, Even J, Chabinyc M L, Stoumpos C C and Kanatzidis M G 2019 Chem 5 2593

    Google Scholar Pub Med

    Wu J, Liu S C, Li Z, Wang S, Xue D J, Lin Y and Hu J S 2021 Natl. Sci. Rev. 8 047

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(161) PDF downloads(0) Cited by(0)

Access History

Effect of Lewis acid-base additive on lead-free Cs2SnI6 thin film prepared by direct solution coating process

Fund Project: 

Abstract: Inorganic Cs$_{2}$SnI$_{6}$ perovskite has exhibited substantial potential for light harvesting due to its exceptional optoelectronic properties and remarkable stability in ambient conditions. The charge transport characteristics within perovskite films are subject to modulation by various factors, including crystalline orientation, morphology, and crystalline quality. Achieving preferred crystalline orientation and film morphology via a solution-based process is challenging for Cs$_{2}$SnI$_{6}$ films. In this work, we employed thiourea as an additive to optimize crystal orientation, enhance film morphology, promote crystallization, and achieve phase purity. Thiourea lowers the surface energy of the (222) plane along the $\langle 111\rangle$ direction, confirmed by x-ray diffraction, x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy studies, and density functional theory calculations. Varying thiourea concentration enables a bandgap tuning of Cs$_{2}$SnI$_{6}$ from 1.52 eV to 1.07 eV. This approach provides a novel method for utilizing Cs$_{2}$SnI$_{6}$ films in high-performance optoelectronic devices.

Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return