2024 Volume 33 Issue 8
Article Contents

C. S. Gomes1, F. E. Jorge1, 2, †, and A. Canal Neto1. 2024: All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules, Chinese Physics B, 33(8): 083101. doi: 10.1088/1674-1056/ad4bbe
Citation: C. S. Gomes1, F. E. Jorge1, 2, †, and A. Canal Neto1. 2024: All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules, Chinese Physics B, 33(8): 083101. doi: 10.1088/1674-1056/ad4bbe

All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules

  • Received Date: 17/02/2024
    Accepted Date: 12/05/2024
  • A segmented basis set of quadruple zeta valence quality plus polarization functions (QZP) for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian. This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately. Using the ZORA-CCSD(T)/QZP-ZORA theoretical model, atomic ionization energies and bond lengths, harmonic vibrational frequencies, and atomization energies of some molecules were calculated. The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties. For atomization energies, a similar observation emerges when considering spin-orbit couplings. With the augmented QZP-ZORA set, static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values. Performance evaluations of the ZORA and Douglas-Kroll-Hess Hamiltonians were made for each property studied.
  • 加载中
  • Schäfer A, Horn H and Ahlrichs R 1992 J. Chem. Phys. 97 2571

    Google Scholar Pub Med

    Schäfer A, Huber C and Ahlrichs R 1994 J. Chem. Phys. 100 5829

    Google Scholar Pub Med

    Weigend F, Furche F and Ahlrichs R 2003 J. Chem. Phys. 119 12753

    Google Scholar Pub Med

    Almlöf J and Taylor P R 1987 J. Chem. Phys. 86 4070

    Google Scholar Pub Med

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    Google Scholar Pub Med

    Woon D E and Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    Google Scholar Pub Med

    Wilson A K, van Mourik T and Dunning Jr T H 1996 J. Mol. Struct. THEOCHEM 388 339

    Google Scholar Pub Med

    Wilson A K, Woon D E, Peterson K A and Dunning Jr T H 1999 J. Chem. Phys. 110 7667

    Google Scholar Pub Med

    Raffenet R C 1973 J. Chem. Phys. 58 4452

    Google Scholar Pub Med

    Dunning Jr T H 1970 J. Chem. Phys. 53 2823

    Google Scholar Pub Med

    Canal Neto A, Muniz E P, Centoducatte R and Jorge F E 2005 J. Mol. Struct. THEOCHEM 718 219

    Google Scholar Pub Med

    Camiletti G G, Machado S F and Jorge F E 2008 J. Comp. Chem. 29 2434

    Google Scholar Pub Med

    Barros C L, de Oliveira P J P, Jorge F E, Canal Neto A and Campos M 2010 Mol. Phys. 108 1965

    Google Scholar Pub Med

    Barbieri P L, Fantin P A and Jorge F E 2006 Mol. Phys. 104 2945

    Google Scholar Pub Med

    Machado S F, Camiletti G G, Canal Neto A, Jorge F E and Jorge R S 2009 Mol. Phys. 107 1713

    Google Scholar Pub Med

    Campos C T and Jorge F E 2013 Mol. Phys. 111 167

    Google Scholar Pub Med

    Ceolin G A, de Berrêdo R C and Jorge F E 2013 Theor. Chem. Acc. 132 1339

    Google Scholar Pub Med

    Ferreira I B, Campos C T and Jorge F E 2020 J. Mol. Model. 26 95

    Google Scholar Pub Med

    Camiletti G G, Canal Neto A, Jorge F E and Machado S F 2009 J. Mol. Struct. THEOCHEM 910 122

    Google Scholar Pub Med

    De Oliveira P J P, Barros C L, Jorge F E, Canal Neto A and Campos M 2010 J. Mol. Struct. THEOCHEM 948 43

    Google Scholar Pub Med

    Fantin P A, Barbieri P L, Canal Neto A and Jorge F E 2007 J. Mol. Struct. THEOCHEM 810 103

    Google Scholar Pub Med

    Martins L S C, de Souza F A L, Ceolin G A, Jorge F E, de Berrêdo R C and Campos C T 2013 Comput. Theor. Chem. 1013 62

    Google Scholar Pub Med

    Van Lenthe E, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597

    Google Scholar Pub Med

    Douglas M and Kroll N M 1974 Ann. Phys. 82 89

    Google Scholar Pub Med

    Hess B A 1985 Phys. Rev. A 32 756

    Google Scholar Pub Med

    Hess B A 1986 Phys. Rev. A 33 3742

    Google Scholar Pub Med

    De Jong W A, Harrison R J and Dixon D A 2001 J. Chem. Phys. 114 48

    Google Scholar Pub Med

    Jorge F E, Canal Neto A, Camiletti G G and Machado S F 2009 J. Chem. Phys. 130 064108

    Google Scholar Pub Med

    De Almeida C A, Pinto L P N M, dos Santos H F and Paschoal D F S 2021 J. Mol. Model. 27 322

    Google Scholar Pub Med

    Mikherdov A S, Jin M and Ito H 2023 Chem. Sci. 14 4485

    Google Scholar Pub Med

    Lavrenova L G, Ivanova A I, Glinskaya L A, Artem’ev A V, Lavrov A N, Novikov A S and Abramov P A 2023 Chem. Asian J. 18 e202201200

    Google Scholar Pub Med

    Fomenko I S, Koshcheeva O S, Kuznetsova N I, Larina T V, Gongola M I, Afewerki M, Abramov P A, Novikov A S and Gushchin A L 2023 Catalysts 13 849

    Google Scholar Pub Med

    Jorge F E and de Macedo L G M 2016 Chin. Phys. B 25 123102

    Google Scholar Pub Med

    Jorge F E and Venancio J R C 2018 Chin. Phys. B 27 063102

    Google Scholar Pub Med

    Roos B O, Lindh R, Malmqvist P Å, Veryazov V and Widmark P O 2005 J. Phys. Chem. A 109 6575

    Google Scholar Pub Med

    Roos B O, Lindh R, Malmqvist P Å, Veryazov V and Widmark P O 2004 J. Phys. Chem. A 108 2851

    Google Scholar Pub Med

    Roos B O, Veryazov V and Widmark P O 2004 Theor. Chem. Acc. 111 345

    Google Scholar Pub Med

    Noro T, Sekiya M and Koga T 2012 Theor. Chem. Acc. 131 1124

    Google Scholar Pub Med

    Balabanov N B and Peterson K A 2005 J. Chem. Phys. 123 064107

    Google Scholar Pub Med

    Peterson K A, Figgen D, Dolg M and Stoll H 2007 J. Chem. Phys. 126 124101

    Google Scholar Pub Med

    Canal Neto A, Ferreira I B, Jorge F E and de Oliveira A Z 2021 Chem. Phys. Lett. 771 138548

    Google Scholar Pub Med

    Pantazis D A, Chen X Y, Landis C R and Neese F 2008 J. Chem. Theory Comput. 4 908

    Google Scholar Pub Med

    Canal Neto A, de Oliveira A Z, Jorge F E and Camiletti G G 2021 J. Mol. Model. 27 232

    Google Scholar Pub Med

    Jorge F E and Canal Neto A 2020 Theor. Chem. Acc. 139 76

    Google Scholar Pub Med

    Neese F 2018 WIREs Comput. Mol. Sci. 8 e1327

    Google Scholar Pub Med

    Franzk Y J, Spiske L, Pollak P and Weigend F 2020 J. Chem. Theory Comput. 16 5658

    Google Scholar Pub Med

    Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2023 NIST Atomic Spectra Database (ver. 5.11)

    Google Scholar Pub Med

    Centoducatte R, de Oliveira A Z, Jorge F E and Camiletti G G 2022 Comput. Theor. Chem. 1207 113511

    Google Scholar Pub Med

    Schwerdtfeger P and Nagle J K 2019 Mol. Phys. 117 1200

    Google Scholar Pub Med

    Lide D R (Ed.) 2003-2004 CRC Handbook of Chemistry and Physics 84th edn (CRC Press)

    Google Scholar Pub Med

    Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)

    Google Scholar Pub Med

    Sontag H and Weber R 1982 J. Mol. Spectrosc. 91 72

    Google Scholar Pub Med

    Chase Jr M W 1998 J. Phys. Chem. Ref. Data Monograph vol. 9. NISTJANAF Thermochemical Tables, 4th edn, Part I, Al-Co (New York: American Institute of Physics)

    Google Scholar Pub Med

    Feller D, Peterson K A, de Jong W A and Dixon D A 2003 J. Chem. Phys. 118 3510

    Google Scholar Pub Med

    Peterson K A, Shepler B C, Figgen D and Stoll H 2006 J. Phys. Chem. A 110 13877

    Google Scholar Pub Med

    DeYonker N J, Peterson K A and Wilson A K 2007 J. Phys. Chem. A 111 11383

    Google Scholar Pub Med

    Shim I, Mandix K and Gingerich K A 1991 J. Phys. Chem. 95 5435

    Google Scholar Pub Med

    Kingcade J E, Nagarathna-Naik H M, Shim I and Gingerich K A 1986 J. Phys. Chem. 90 2830

    Google Scholar Pub Med

    Zavitsas A A 2003 J. Phys. Chem. A 107 897

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(235) PDF downloads(3) Cited by(0)

Access History

All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules

Abstract: A segmented basis set of quadruple zeta valence quality plus polarization functions (QZP) for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian. This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately. Using the ZORA-CCSD(T)/QZP-ZORA theoretical model, atomic ionization energies and bond lengths, harmonic vibrational frequencies, and atomization energies of some molecules were calculated. The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties. For atomization energies, a similar observation emerges when considering spin-orbit couplings. With the augmented QZP-ZORA set, static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values. Performance evaluations of the ZORA and Douglas-Kroll-Hess Hamiltonians were made for each property studied.

Reference (59)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return