2024 Volume 33 Issue 8
Article Contents

Tijjani Abdulrazak1, 2, ‡, Xuejuan Liu(刘雪娟)1, 3, Zhejunyu Jin(金哲珺雨)1, Yunshan Cao(曹云姗)1, and Peng Yan(严鹏)1, †. 2024: Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes, Chinese Physics B, 33(8): 087503. doi: 10.1088/1674-1056/ad4ff5
Citation: Tijjani Abdulrazak1, 2, ‡, Xuejuan Liu(刘雪娟)1, 3, Zhejunyu Jin(金哲珺雨)1, Yunshan Cao(曹云姗)1, and Peng Yan(严鹏)1, †. 2024: Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes, Chinese Physics B, 33(8): 087503. doi: 10.1088/1674-1056/ad4ff5

Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes

  • Received Date: 05/02/2024
    Accepted Date: 09/05/2024
  • Fund Project:

    This project was supported by the National Key R&D Program China (Grant No. 2022YFA1402802) and the National Natural Science Foundation of China (Grant Nos. 12374103 and 12074057).

  • Within the magnonics community, there has been a lot of interests in the magnon-skyrmion interaction. Magnons and skyrmions are two intriguing phenomena in condensed matter physics, and magnetic nanotubes have emerged as a suitable platform to study their complex interactions. We show that magnon frequency combs can be induced in magnetic nanotubes by three-wave mixing between the propagating magnons and skyrmion. This study enriches our fundamental comprehension of magnon-skyrmion interactions and holds promise for developing innovative spintronic devices and applications. This frequency comb tunability and unique spectral features offer a rich platform for exploring novel avenues in magnetic nanotechnology.
  • 加载中
  • Bellini M and Hänsch T W 2000 Opt. Lett. 14 1049

    Google Scholar Pub Med

    Fortier T and Baumann E 2019 Commun. Phys. 2 153

    Google Scholar Pub Med

    Jones D J, Diddams S A, Taubman M S, Cundiff S T, Ma L S and Hall J L 2000 Opt. Lett. 5 308

    Google Scholar Pub Med

    Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202

    Google Scholar Pub Med

    Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233

    Google Scholar Pub Med

    Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214

    Google Scholar Pub Med

    Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, Chembo Y K, Hansson T, Wabnitz S, Del’Haye P, Xue X, Weiner A M and Morandotti R 2018 Phys. Rep. 729 81

    Google Scholar Pub Med

    Suh M G, Yi X, Lai Y H, Leifer S, Grudinin I S, Vasisht G, Martin E C, Fitzgerald M P, Doppmann G and Wang J 2019 Nat. Photon. 13 25

    Google Scholar Pub Med

    Dutt A, Joshi C, Ji X, Cardenas J, Okawachi Y, Luke K, Gaeta A L and Lipson M 2018 Sci. Adv. 4 1701858

    Google Scholar Pub Med

    Ganesan A, Do C and Seshia A 2017 Phys. Rev. Lett. 118 033903

    Google Scholar Pub Med

    Cao L S, Qi D X, Peng R W, Wang M and Schmelcher P 2014 Phys. Rev. Lett. 112 075505

    Google Scholar Pub Med

    Nikuni T, Oshikawa M, Oosawa A and Tanaka H 2000 Phys. Rev. Lett. 84 5868

    Google Scholar Pub Med

    Zhao J, Bragas A V, Lockwood D J and Merlin R 2004 Phys. Rev. Lett. 93 107203

    Google Scholar Pub Med

    Bender S A, Duine R A and Tserkovnyak Y 2012 Phys. Rev. Lett. 108 246601

    Google Scholar Pub Med

    Flebus B, Bender S A, Tserkovnyak Y and Duine R A 2016 Phys. Rev. Lett. 116 117201

    Google Scholar Pub Med

    Kamra A, Thingstad E, Rastelli G, Duine R A, Brataas A, Belzig W and Sudbø A 2019 Phys. Rev. B 100 174407

    Google Scholar Pub Med

    Liu Z X, Xiong H and Wu Y 2019 Phys. Rev. B 100 134421

    Google Scholar Pub Med

    Yuan H Y and Duine R A 2020 Phys. Rev. B 102 100402

    Google Scholar Pub Med

    Wolz T, Stehli A, Schneider A, Boventer I, Macêdo R, Ustinov A V, Kläui M and Weides M 2020 Commun. Phys. 3 3

    Google Scholar Pub Med

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Science 367 425

    Google Scholar Pub Med

    Yuan H Y, Zheng S, Ficek Z, He Q Y and Yung M H 2020 Phys. Rev. B 101 014419

    Google Scholar Pub Med

    Wang W, Albert M, Beg M, Bisotti M A, Chernyshenko D, Cortés-Ortuño D Hawke I and Fangohr H 2015 Phys. Rev. Lett. 114 087203

    Google Scholar Pub Med

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Waeyenberge F B V 2014 AIP Adv. 4 107133

    Google Scholar Pub Med

    Liang X, Xia J, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Qiu L, Zhao G P and Zhou Y 2021 Appl. Phys. Lett. 119 062403

    Google Scholar Pub Med

    Huang C, Liu B, Jiang L, Pan Y, Fan J, Shi D, Ma C, Luo Q and Zhu Y 2023 Phys. Rev. B 108 094433

    Google Scholar Pub Med

    Zhu Y, Pan Y F, Ge L, Fan J Y, Shi D N, Ma C L, Hu J and Wu R Q 2023 Phys. Rev. B 108 041401

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(158) PDF downloads(1) Cited by(0)

Access History

Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes

Fund Project: 

Abstract: Within the magnonics community, there has been a lot of interests in the magnon-skyrmion interaction. Magnons and skyrmions are two intriguing phenomena in condensed matter physics, and magnetic nanotubes have emerged as a suitable platform to study their complex interactions. We show that magnon frequency combs can be induced in magnetic nanotubes by three-wave mixing between the propagating magnons and skyrmion. This study enriches our fundamental comprehension of magnon-skyrmion interactions and holds promise for developing innovative spintronic devices and applications. This frequency comb tunability and unique spectral features offer a rich platform for exploring novel avenues in magnetic nanotechnology.

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return