2024 Volume 33 Issue 8
Article Contents

Wen-Tao Lu(卢文韬)1, Sheng-Kai Xia(夏圣开)2, Ai-Qing Chen(陈爱庆)3, Kang-Hao He(何康浩)3, Zeng-Bo Xu(许增博)4, Yi-Han Chen(陈艺涵)5, Yang Wang(汪洋)6, Shi-Yu Ge(葛仕宇)3, Si-Han An(安思瀚)3, Jian-Fei Wu(吴建飞)7, Yi-Han Ma(马艺菡)3, and Guan-Xiang Du(杜关祥)3, †. 2024: Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field, Chinese Physics B, 33(8): 080305. doi: 10.1088/1674-1056/ad5321
Citation: Wen-Tao Lu(卢文韬)1, Sheng-Kai Xia(夏圣开)2, Ai-Qing Chen(陈爱庆)3, Kang-Hao He(何康浩)3, Zeng-Bo Xu(许增博)4, Yi-Han Chen(陈艺涵)5, Yang Wang(汪洋)6, Shi-Yu Ge(葛仕宇)3, Si-Han An(安思瀚)3, Jian-Fei Wu(吴建飞)7, Yi-Han Ma(马艺菡)3, and Guan-Xiang Du(杜关祥)3, †. 2024: Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field, Chinese Physics B, 33(8): 080305. doi: 10.1088/1674-1056/ad5321

Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field

  • Received Date: 11/04/2024
    Accepted Date: 30/05/2024
  • Fund Project:

    Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600).

  • We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format. The measurement results are compared in detail with simulation, showing a good consistence. Further simulation shows fiber diamond probe brings negligible disturbance to the field under measurement compared to bulk diamond. This method will find important applications ranging from electromagnetic compatibility test and failure analysis of high frequency and high complexity integrated circuits.
  • 加载中
  • Jennings J M, Kar A, Vaidyanathan R 2020 AIP Advances 10 065202

    Google Scholar Pub Med

    Wu J F, Zheng Y F, Liu P G, Dong M M and Du G X 2021 Int. J. RF Microw. Comput. Aided. Eng. 31 e22650

    Google Scholar Pub Med

    Fancher C T, Scherer D R, John M C S and MarlowMauger B L S 2021 IEEE Trans. Quantum Eng. 2 1

    Google Scholar Pub Med

    Liu B, Zhang L H, Liu Z K, Deng Z A, Ding D S, Shi B S and Guo G C 2023 Electromagnetic Science 1 1

    Google Scholar Pub Med

    Kumar S, Fam H Q, Kübler H, Sheng J T and Shaffer J P 2017 Sci. Rep. 7 42981

    Google Scholar Pub Med

    Affolderbach C, Du G X, Bandi T, Horsley A, Treutlein P and Mileti G 2015 IEEE Transactions on Instrumentation and Measurement 64 3629

    Google Scholar Pub Med

    Beveratos A, Brouri R, Poizat J P and Grangier P 2002 Quantum Communication, Computing, and Measurement (New York: Springer) p. 261

    Google Scholar Pub Med

    Appel P, Neu E, Ganzhorn M, Barfuss A, Batzer M, Gratz M, Tschöpe A and Maletinsky P 2016 Rev. Sci. Instrum. 87 063703

    Google Scholar Pub Med

    Pham L M, Sage D L, Stanwix P L, Yeung T K, Glenn D, Trifonov A, Cappellaro P, Hemmer P R, Lukin D M, Park H, Yacoby A and Walsworth R L 2011 New J. Phys. 13 045021

    Google Scholar Pub Med

    Epstein J R, Mendoza F M, Kato Y K and Awschalom D D 2005 Nat. Phys. 1 94

    Google Scholar Pub Med

    Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R and Wrachtrup J 2006 Nat. Phys. 2 408

    Google Scholar Pub Med

    Childress L I 2007 Coherent manipulation of single quantum systems in the solid state, Ph. D. Dissertation (Cambridge: Harvard University)

    Google Scholar Pub Med

    Barson M S J, Oberg L M, McGuinness L P, Denisenko A, Manson N B, Wrachtrup J and Doherty M W 2021 Nano Lett. 21 2962

    Google Scholar Pub Med

    Appel1 P, Ganzhorn M, Neu E and Maletinsky P 2015 New J. Phys. 17 112001

    Google Scholar Pub Med

    Bai R X, Zhu X Y, Yang F, Gao T R, Wang Z R, Yu L Y, Wang J F, Zhou L and Du G X 2022 Chin. Phys. B 31 074203

    Google Scholar Pub Med

    Bai R X, Yang F, Liu P, Gao T R, Zhou L, Yin X H, Zhu X Y, Ma W H, He F Y, Chen N C, Sun Y, Ma J T, Yu T and Du G X 2022 Appl. Phys. Lett. 120 044003

    Google Scholar Pub Med

    Li M X, Zhang N, Xu L X, Zhang J X, Bian G D, Fan P C, Wang S X and Yuan H 2023 Phys. Rev. Appl. 19 054088

    Google Scholar Pub Med

    Chen G B, Gu B X, He W H, Guo Z G and Du G X 2020 IEEE J. Quantum Electron. 56 1

    Google Scholar Pub Med

    Wang Y P, Zhang R J, Yang Y, Wu Q, Yu Z F and Chen B 2023 Chin. Phys. B 32 070301

    Google Scholar Pub Med

    Ye J F, Jiao Z, Ma K, Huang Z Y, Lv H J and Jiang F J 2019 Chin. Phys. B 28 047601

    Google Scholar Pub Med

    Steiner M, Neumann P, Beck J, Jelezko F and Wrachtrup J 2010 Phys. Rev. B 81 035205

    Google Scholar Pub Med

    Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105

    Google Scholar Pub Med

    Duan D, Du G X, Kavatamane V K, Arumugam S, Tzeng Y K, Chang H C and Balasubramanian G 2019 Opt. Express 27 6734

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(209) PDF downloads(4) Cited by(0)

Access History

Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field

Fund Project: 

Abstract: We present a quantitative measurement of the horizontal component of the microwave magnetic field of a coplanar waveguide using a quantum diamond probe in fiber format. The measurement results are compared in detail with simulation, showing a good consistence. Further simulation shows fiber diamond probe brings negligible disturbance to the field under measurement compared to bulk diamond. This method will find important applications ranging from electromagnetic compatibility test and failure analysis of high frequency and high complexity integrated circuits.

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return