2024 Volume 33 Issue 9
Article Contents

Lei Fu(伏磊)†, Shasha Li(李沙沙)†, ‡, Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰)§, and Yong Pu(普勇)¶. 2024: Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC, Chinese Physics B, 33(9): 096301. doi: 10.1088/1674-1056/ad5538
Citation: Lei Fu(伏磊)†, Shasha Li(李沙沙)†, ‡, Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰)§, and Yong Pu(普勇)¶. 2024: Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC, Chinese Physics B, 33(9): 096301. doi: 10.1088/1674-1056/ad5538

Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC

  • Received Date: 08/04/2024
    Accepted Date: 05/06/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 12104234), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20210578, 20KJB140004, and JSSCBS20210513). Y Pu acknowledges the National Natural Science Foundation of China (Grant Nos. 61874060, U1932159, and 61911530220), Jiangsu Specially-Appointed Professor Program, the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20181388 and 19KJA180007), and the Overseas Researcher Innovation Program of Nanjing, NUPTSF (Grant No. NY217118). F Li Acknowledges the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (Grant No. 21KJD140005) and the National Natural Science Foundation of China (Grant No. 12304085).

  • The two-dimensional (2D) Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures. Van der Waals CrCl$_{3}$ monolayer has been experimentally proved to have an in-plane magnetic easy axis and a low Curie temperature of 17 K, which will limit its application in spintronic devices. In this work, we propose a new Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ based on the first principles calculations. The phonon dispersion and elastic constants confirm that Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is dynamically and mechanically stable. Our Monte Carlo simulation results based on magnetic exchange constants reveal that Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is an intrinsic ferromagnetic semiconductor with $T_{\rm C}$ of 180 K, which is much higher than that of CrCl$_{3}$ due to the enhanced ferromagnetic coupling caused by S substitution. Moreover, the magnetic easy axis of Janus Cr$_{2}$Cl$_{3}$S$_{3}$ can be tuned to the perpendicular direction with a large magnetic anisotropy energy (MAE) of 142 μeV/Cr. Furthermore, the effect of biaxial strain on the magnetic property of Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is evaluated. It is found that the Curie temperature is more robust under tensile strain. This work indicates that the Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ presents increased Curie temperature and out-of-plane magnetic easy axis, suggesting greater application potential in 2D spintronic devices.
  • 加载中
  • Lin X Y, Yang W, Wang K L and Zhao W S 2019 Nat. Electron. 2 274

    Google Scholar Pub Med

    Chen J and Dong S 2021 Phys. Rev. Lett. 126 117603

    Google Scholar Pub Med

    Liu Y and Wang Q 2020 Adv. Sci. 7 1902468

    Google Scholar Pub Med

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z and Wang Y 2017 Nature 546 265

    Google Scholar Pub Med

    McGuire M A, Clark G, Ks S, Chance W M, Jellison G E, Cooper V R, Xu X D and Sales B C 2017 Phys. Rev. Mater. 1 014001

    Google Scholar Pub Med

    Huang B W, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270

    Google Scholar Pub Med

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W and Zhu J Y 2018 Nature 563 94

    Google Scholar Pub Med

    Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mate. Chem. C 3 12457

    Google Scholar Pub Med

    Chen S B, Huang C X, Sun H S, Ding J F, Jena P and Kan E J 2019 J. Phys. Chem. C 123 17987

    Google Scholar Pub Med

    Li H X, Xu Y K, Lai K and Zhang W B 2019 Phys. Chem. Chem. Phys. 21 11949

    Google Scholar Pub Med

    Huang C X, Guan J T, Li Q Y, Wu F, Jena P and Kan E J 2021 Phys. Rev. B 103 L140410

    Google Scholar Pub Med

    Avsar A, Ciarrocchi A, Pizzochero M, Unuchek D, Yazyev O V and Kis A 2019 Nat. Nanotechnol. 14 674

    Google Scholar Pub Med

    Jiao J Y, Miao N H, Li Z, Gan Y, Zhou J and Sun Z M 2019 J. Phys. Chem. Lett. 10 3922

    Google Scholar Pub Med

    Ng S W, Noor N and Zheng Z 2018 NPG Asia Mater. 10 217

    Google Scholar Pub Med

    Zhang C M, Nie Y H, Sanvito S and Du A J 2019 Nano Lett. 19 1366

    Google Scholar Pub Med

    Hu Y, Gong Y, Zeng H, Wang J and Fan X L 2020 Phys. Chem. Chem. Phys. 22 24506

    Google Scholar Pub Med

    Li C Q and An Y K 2023 Nanoscale 15 8304

    Google Scholar Pub Med

    Hai X C, Jun Z, Wei J, Yan N Z and Yuan P F 2021 Phys. Rev. B 12 125121

    Google Scholar Pub Med

    Wu D X, Zhuo Z W, Lv H F and Wu X J 2021 J Phys. Chem. Lett. 12 2905

    Google Scholar Pub Med

    Xue F, Hou Y S, Wang Z and Wu R Q 2019 Phys. Rev. B 100 224429

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

    Google Scholar Pub Med

    Blöchl P E 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Rohrbach A, Hafner J and Kresse G 2003 J. Phys.: Condens. Matter. 15 979

    Google Scholar Pub Med

    Huang C X, Du Y P, Wu H P, Xiang H J, Deng K M and Kan E J 2018 Phys. Rev. Lett. 120 147601

    Google Scholar Pub Med

    Webster L and Yan J A 2018 Phys. Rev. B 98 144411

    Google Scholar Pub Med

    Grimme S F, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 15

    Google Scholar Pub Med

    Togo A and Tanaka I 2015 Scripta Materialia 108 1

    Google Scholar Pub Med

    Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, TU Wien, Austria).

    Google Scholar Pub Med

    Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Magn. Mater. 9 767

    Google Scholar Pub Med

    Wan X G, Yin Q and Savrasov S Y 2006 Phys. Rev. Lett. 97 266403

    Google Scholar Pub Med

    Wang D, Bo X Y, Tang F and Wan X G 2023 Phys. Rev. B 108 085140

    Google Scholar Pub Med

    Bo X Y, Fu L, Wan X G, Li S S and Pu Y 2024 Phys. Rev. B 109 014405

    Google Scholar Pub Med

    Bo X Y, Wang D, Wan B and Wan X G 2020 Phys. Rev. B 101 024416

    Google Scholar Pub Med

    Bo X, Wang D and Wan X G 2021 Phys. Lett. A 394 127202

    Google Scholar Pub Med

    Wang D, Bo X Y, Tang F and Wan X G 2019 Phys. Rev. B 99 035160

    Google Scholar Pub Med

    Zhang Y H, Wang B, Guo Y L, Li Q and Wang J L 2021 Comp. Mater. Sci. 197 110638

    Google Scholar Pub Med

    Zhang F, Mi W B and Wang X C 2019 Adv. Electron. Mater. 6 1900778

    Google Scholar Pub Med

    Wang Y, Qiao M, Li Y F and Chen Z F 2018 Nanos. Horizon. 3 327

    Google Scholar Pub Med

    Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Magn. Magn. Mater. 508 166878

    Google Scholar Pub Med

    Zhang Y H, Wang B, Guo Y L, Li Q and Wang J L 2021 Comp. Mater. Sci. 197 110638

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(61) PDF downloads(0) Cited by(0)

Access History

Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC

Fund Project: 

Abstract: The two-dimensional (2D) Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures. Van der Waals CrCl$_{3}$ monolayer has been experimentally proved to have an in-plane magnetic easy axis and a low Curie temperature of 17 K, which will limit its application in spintronic devices. In this work, we propose a new Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ based on the first principles calculations. The phonon dispersion and elastic constants confirm that Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is dynamically and mechanically stable. Our Monte Carlo simulation results based on magnetic exchange constants reveal that Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is an intrinsic ferromagnetic semiconductor with $T_{\rm C}$ of 180 K, which is much higher than that of CrCl$_{3}$ due to the enhanced ferromagnetic coupling caused by S substitution. Moreover, the magnetic easy axis of Janus Cr$_{2}$Cl$_{3}$S$_{3}$ can be tuned to the perpendicular direction with a large magnetic anisotropy energy (MAE) of 142 μeV/Cr. Furthermore, the effect of biaxial strain on the magnetic property of Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is evaluated. It is found that the Curie temperature is more robust under tensile strain. This work indicates that the Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ presents increased Curie temperature and out-of-plane magnetic easy axis, suggesting greater application potential in 2D spintronic devices.

Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return