2024 Volume 33 Issue 9
Article Contents

Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). 2024: Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As), Chinese Physics B, 33(9): 096302. doi: 10.1088/1674-1056/ad6077
Citation: Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). 2024: Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As), Chinese Physics B, 33(9): 096302. doi: 10.1088/1674-1056/ad6077

Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)

  • Received Date: 07/03/2024
    Accepted Date: 27/05/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62174088 and 62371238).

  • Exploring novel two-dimensional (2D) valleytronic materials has an essential impact on the design of spintronic and valleytronic devices. Our first principles calculation results reveal that the Janus SWSi$X_{2}$ ($X = {\rm N}$, P, As) monolayer has excellent dynamical and thermal stability. Owing to strong spin-orbit coupling (SOC), the SWSi$X_{2}$ monolayer exhibits a valence band spin splitting of up to 0.49 eV, making it promising 2D semiconductor for valleytronic applications. The opposite Berry curvatures and optical selection rules lead to the coexistence of valley and spin Hall effects in the SWSi$X_{2}$ monolayer. Moreover, the optical transition energies can be remarkably modulated by the in-plane strains. Large tensile (compressive) in-plane strains can achieve spin flipping in the SWSiN$_{2}$ monolayer, and induce both SWSiP$_{2}$ and SWSiAs$_{2}$ monolayers transit from semiconductor to metal. Our research provides new 2D semiconductor candidates for designing high-performance valleytronic devices.
  • 加载中
  • Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055

    Google Scholar Pub Med

    He M, Rivera P, Tuan D V, Wilson N P, Yang M, Taniguchi T, Watanabe K, Yan J, Mandrus D G, Yu H, Dery H, Yao W and Xu X 2020 Nat. Commun. 11 618

    Google Scholar Pub Med

    Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809

    Google Scholar Pub Med

    Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490

    Google Scholar Pub Med

    Kim Y and Lee J D 2019 Phys. Rev. Appl. 11 034048

    Google Scholar Pub Med

    Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802

    Google Scholar Pub Med

    Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405

    Google Scholar Pub Med

    Ohkawa F J and Uemura Y 1977 J. Phys. Soc. Jpn. 43 917

    Google Scholar Pub Med

    Gunawan O, Habib B, De Poortere E P and Shayegan M 2006 Phys. Rev. B 74 155436

    Google Scholar Pub Med

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666

    Google Scholar Pub Med

    Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494

    Google Scholar Pub Med

    Singh N and Schwingenschlogl U 2017 Adv. Mater. 29 1600970

    Google Scholar Pub Med

    Qian X, Liu J, Fu L and Li J 2014 Science 346 1344

    Google Scholar Pub Med

    Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489

    Google Scholar Pub Med

    Chang M C, Ho P H, Tseng M F, Lin F Y, Hou C H, Lin I K, Wang H, Huang P P, Chiang C H, Yang Y C, Wang I T, Du H Y, Wen C Y, Shyue J J, Chen C W, Chen K H, Chiu P W and Chen L C 2020 Nat. Commun. 11 3682

    Google Scholar Pub Med

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147

    Google Scholar Pub Med

    Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M and Ren W 2020 Science 369 670

    Google Scholar Pub Med

    Zhao H, Yang G, Liu Y, Yang X, Gu Y, Wei C, Xie Z, Zhang Q, Bian B, Zhang X, Huo X and Lu N 2021 ACS Appl. Electron. Mater. 3 5086

    Google Scholar Pub Med

    Yuan J, Wei Q, Sun M, Yan X, Cai Y, Shen L and Schwingenschlögl U 2022 Phys. Rev. B 105 195151

    Google Scholar Pub Med

    Hasani N, Shalchian M, Rajabi-Maram A and Touski S B 2023 IEEE Trans. Electron Dev. 70 5415

    Google Scholar Pub Med

    Nandan K, Bhowmick S, Chauhan Y S and Agarwal A 2023 Phys. Rev. Appl. 19 064058

    Google Scholar Pub Med

    Sheoran S, Monga S, Phutela A and Bhattacharya S 2023 J. Phys. Chem. Lett. 14 1494

    Google Scholar Pub Med

    Zhao J, Jin X, Zeng H, Yao C and Yan G 2021 Appl. Phys. Lett. 119 213101

    Google Scholar Pub Med

    Cao L, Zhou G, Wang Q, Ang L K and Ang Y S 2021 Appl. Phys. Lett. 118 013106

    Google Scholar Pub Med

    Zhang X, Zheng J Y, Xiang Y C, Wu D, Fan J, Sun Y Y, Chen L J, Gan L Y and Zhou X 2023 Appl. Phys. Lett. 123 023505

    Google Scholar Pub Med

    Cao L, Deng X, Tang Z k, Tan R and Ang Y S 2024 J. Mater. Chem. C 12 648

    Google Scholar Pub Med

    Qi Y, Yao C, Zhao J and Zeng H 2023 Phys. Chem. Chem. Phys. 25 28104

    Google Scholar Pub Med

    Tho C C, Guo S D, Liang S J, Ong W L, Lau C S, Cao L, Wang G and Ang Y S 2023 Appl. Phys. Rev. 10 041307

    Google Scholar Pub Med

    Guo S D, Mu W Q, Zhu Y T, Han R Y and Ren W C 2021 J. Mater. Chem. C 9 2464

    Google Scholar Pub Med

    Rudi S G, Soleimani-Amiri S, Rezavand A and Ghobadi N 2023 J. Phys. Chem. Solids 181 111561

    Google Scholar Pub Med

    Nguyen H T, Cuong N Q, Vi V T T, Hieu N N and Tran L P T 2023 Phys. Chem. Chem. Phys. 25 21468

    Google Scholar Pub Med

    Zhao J, Qi Y, Yao C and Zeng H 2024 Phys. Rev. B 109 035408

    Google Scholar Pub Med

    Geng L, Chen K, Lu H, Wang S and Yang Y 2023 Phys. Chem. Chem. Phys. 25 32021

    Google Scholar Pub Med

    Sibatov R T, Meftakhutdinov R M and Kochaev A I 2022 Appl. Surf. Sci. 585 152465

    Google Scholar Pub Med

    Nguyen S T, Cuong P V, Cuong N Q and Nguyen C V 2022 Dalton Trans. 51 14338

    Google Scholar Pub Med

    Gao Z, He Y and Xiong K 2023 Dalton Trans. 52 17416

    Google Scholar Pub Med

    Tran P T L, Hieu N V, Bui D H, Cuong Q N and Hieu N N 2023 Nanoscale Adv. 5 3104

    Google Scholar Pub Med

    Dong M M, He H, Niu Y, Wang C K and Fu X X 2023 ACS Appl. Nano Mater. 6 1541

    Google Scholar Pub Med

    Sun Z, Li X, Zhao Z, Zeng Y, Wei Y and Wang J 2023 J. Mater. Chem. C 11 9815

    Google Scholar Pub Med

    Zhao J, Qi Y, Yao C and Zeng H 2024 Appl. Phys. Lett. 124 093103

    Google Scholar Pub Med

    Qi Y, Yao C, Zhao J and Zeng H 2024 J. Mater. Chem. C 12 4417

    Google Scholar Pub Med

    Chen H X, Yuan X B and Ren J F 2024 Chin. Phys. B 33 047304

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Kresse G and Hafner J 1993 Phys. Rev. B 47 558

    Google Scholar Pub Med

    Blöchl P E 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187

    Google Scholar Pub Med

    Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Google Scholar Pub Med

    Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106

    Google Scholar Pub Med

    Barnett R N and Landman U 1993 Phys. Rev. B 48 2081

    Google Scholar Pub Med

    Kim S W, Kim H J, Cheon S and Kim T H 2022 Phys. Rev. Lett. 128 046401

    Google Scholar Pub Med

    Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033

    Google Scholar Pub Med

    Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272

    Google Scholar Pub Med

    Qi Y, Yao C, Zhao J and Zeng H 2023 Phys. Rev. B 108 125304

    Google Scholar Pub Med

    Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X and Kang J 2019 Phys. Rev. B 100 195435

    Google Scholar Pub Med

    Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428

    Google Scholar Pub Med

    Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G and Fal’ko V I 2013 Phys. Rev. B 88 045416

    Google Scholar Pub Med

    Ai H, Liu D, Geng J, Wang S, Lo K H and Pan H 2021 Phys. Chem. Chem. Phys. 23 3144

    Google Scholar Pub Med

    Mostofi A A, Vanderbilt D, Souza I, Yates J R, Marzari N and Lee Y S 2008 Comput. Phys. Commun. 178 685

    Google Scholar Pub Med

    Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204

    Google Scholar Pub Med

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887

    Google Scholar Pub Med

    Mak K F, Xiao D and Shan J 2018 Nat. Photon. 12 451

    Google Scholar Pub Med

    Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y and Chen Y P 2023 Adv. Mater. 35 2205714

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(68) PDF downloads(0) Cited by(0)

Access History

Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)

Fund Project: 

Abstract: Exploring novel two-dimensional (2D) valleytronic materials has an essential impact on the design of spintronic and valleytronic devices. Our first principles calculation results reveal that the Janus SWSi$X_{2}$ ($X = {\rm N}$, P, As) monolayer has excellent dynamical and thermal stability. Owing to strong spin-orbit coupling (SOC), the SWSi$X_{2}$ monolayer exhibits a valence band spin splitting of up to 0.49 eV, making it promising 2D semiconductor for valleytronic applications. The opposite Berry curvatures and optical selection rules lead to the coexistence of valley and spin Hall effects in the SWSi$X_{2}$ monolayer. Moreover, the optical transition energies can be remarkably modulated by the in-plane strains. Large tensile (compressive) in-plane strains can achieve spin flipping in the SWSiN$_{2}$ monolayer, and induce both SWSiP$_{2}$ and SWSiAs$_{2}$ monolayers transit from semiconductor to metal. Our research provides new 2D semiconductor candidates for designing high-performance valleytronic devices.

Reference (63)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return