2024 Volume 33 Issue 10
Article Contents

Long-Quan Lai(赖龙泉) and Zhao Li(李照). 2024: Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations, Chinese Physics B, 33(10): 100303. doi: 10.1088/1674-1056/ad607b
Citation: Long-Quan Lai(赖龙泉) and Zhao Li(李照). 2024: Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations, Chinese Physics B, 33(10): 100303. doi: 10.1088/1674-1056/ad607b

Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations

  • Received Date: 28/05/2024
    Accepted Date: 05/07/2024
  • Fund Project:

    This work was supported by the China Scholarship Council (Grant No. 201906130092), the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant No. NY223065), and the Natural Science Foundation of Sichuan Province (Grant No. 2023NSFSC1330).

  • Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications. In this work, we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions. We give the regimes for discrete modes, and find that the emission can be distinctly suppressed. The configuration induces a broad band, but few particles are ejected due to the interference of the matter waves. We further qualitatively model the emission process and demonstrate the short-time behaviors. This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices, and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.
  • 加载中
  • Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885

    Google Scholar Pub Med

    Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Rev. Mod. Phys. 83 863

    Google Scholar Pub Med

    Moon G, Heo M S, Kim Y, Noh H R and Jhe W 2017 Phys. Rep. 698 1

    Google Scholar Pub Med

    Eckardt A 2017 Rev. Mod. Phys. 89 011004

    Google Scholar Pub Med

    Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114

    Google Scholar Pub Med

    Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453

    Google Scholar Pub Med

    Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821

    Google Scholar Pub Med

    Molignini P, Chitra R and Chen W 2019 Europhys. Lett. 128 36001

    Google Scholar Pub Med

    Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027

    Google Scholar Pub Med

    Schweizer C, Grusdt F, Berngruber M, Barbiero L, Demler E, Goldman N, Bloch I and Aidelsburger M 2019 Nat. Phys. 15 1168

    Google Scholar Pub Med

    Wintersperger K, Bukov M, Näger J, Lellouch S, Demler E, Schneider U, Bloch I, Goldman N and Aidelsburger M 2020 Phys. Rev. X 10 011030

    Google Scholar Pub Med

    Song B, Dutta S, Bhave S, Yu J C, Carter E, Cooper N and Schneider U 2022 Nat. Phys. 18 259

    Google Scholar Pub Med

    Pollack S E, Dries D, Hulet R G, Magalhaes K M F, Henn E A L, Ramos E R F, Caracanhas M A and Bagnato V S 2010 Phys. Rev. A 81 053627

    Google Scholar Pub Med

    Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    Google Scholar Pub Med

    Clark L W, Gaj A, Feng L and Chin C 2017 Nature 551 356

    Google Scholar Pub Med

    Fu H, Feng L, Anderson B M, Clark L W, Hu J, Andrade J W, Chin C and Levin K 2018 Phys. Rev. Lett. 121 243001

    Google Scholar Pub Med

    Zhang Z, Yao K X, Feng L, Hu J and Chin C 2020 Nat. Phys. 16 652

    Google Scholar Pub Med

    Feng L, Hu J, Clark L W and Chin C 2019 Science 363 521

    Google Scholar Pub Med

    Fu H, Zhang Z, Yao K X, Feng L, Yoo J, Clark L W, Levin K and Chin C 2020 Phys. Rev. Lett. 125 183003

    Google Scholar Pub Med

    Meznaršič T, Zitko R, Arh T, Gosar K, Zupanič E and Jeglič P 2020 Phys. Rev. A 101 031601

    Google Scholar Pub Med

    Kim K, Hur J, Huh S J, Choi S and Choi J Y 2021 Phys. Rev. Lett. 127 043401

    Google Scholar Pub Med

    Chen T and Yan B 2018 Phys. Rev. A 98 063615

    Google Scholar Pub Med

    Wu Z G and Zhai H 2019 Phys. Rev. A 99 063624

    Google Scholar Pub Med

    Chih L Y and Holland M 2020 New J. Phys. 22 033010

    Google Scholar Pub Med

    Lellouch S and Goldman N 2018 Quantum Sci. Technol. 3 024011

    Google Scholar Pub Med

    Martone G I, Larré P É, Fabbri A and Pavloff N 2018 Phys. Rev. A 98 063617

    Google Scholar Pub Med

    Zhang P F and Gu Y F 2020 SciPost Phys. 9 079

    Google Scholar Pub Med

    Xu P and Zhang W X 2021 Phys. Rev. A 104 023324

    Google Scholar Pub Med

    Liu N and Tu Z C 2020 Commun. Theor. Phys. 72 125501

    Google Scholar Pub Med

    Lai L Q, Yu Y B and Mueller E J 2021 Phys. Rev. A 104 033308

    Google Scholar Pub Med

    Lai L Q, Yu Y B and Mueller E J 2022 Phys. Rev. A 106 033302

    Google Scholar Pub Med

    Lai L Q and Li Z 2024 Chin. Phys. B 33 030308

    Google Scholar Pub Med

    Lai L Q, Li Z, Liu Q H and Yu Y B 2024 Ann. Phys. (Berlin) 536 2300365

    Google Scholar Pub Med

    Zheng H L and Gu Q 2013 Front. Phys. 8 375

    Google Scholar Pub Med

    Xue R, Li W D and Liang Z X 2014 Chin. Phys. Lett. 31 030302

    Google Scholar Pub Med

    Cataldo H M and Jezek D M 2014 Phys. Rev. A 90 043610

    Google Scholar Pub Med

    Chang N N, Yu Z F, Zhang A X and Xue J K 2017 Chin. Phys. B 26 115202

    Google Scholar Pub Med

    Haldar S K and Alon O E 2019 New J. Phys. 21 103037

    Google Scholar Pub Med

    Liu J L and Liang J Q 2019 Chin. Phys. B 28 110304

    Google Scholar Pub Med

    Lindberg D R, Gaaloul N, Kaplan L, Williams J R, Schlippert D, Boege P, Rasel E M and Bondar D I 2023 J. Phys. B: At. Mol. Opt. Phys. 56 025302

    Google Scholar Pub Med

    Korshynska K and Ulbricht S 2024 Phys. Rev. A 109 043321

    Google Scholar Pub Med

    Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318

    Google Scholar Pub Med

    Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51

    Google Scholar Pub Med

    Schachenmayer J, Daley A J and Zoller P 2011 Phys. Rev. A 83 043614

    Google Scholar Pub Med

    Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys. Rev. Lett. 117 013001

    Google Scholar Pub Med

    Zhou T, Yang K, Zhu Z, Yu X, Yang S, Xiong W, Zhou X, Chen X, Li C, Schmiedmayer J, Yue X and Zhai Y 2019 Phys. Rev. A 99 013602

    Google Scholar Pub Med

    Hu J, Feng L, Zhang Z and Chin C 2019 Nat. Phys. 15 785

    Google Scholar Pub Med

    Chen Y Y, Zhang P F, Zheng W, Wu Z G and Zhai H 2020 Phys. Rev. A 102 011301

    Google Scholar Pub Med

    Lyu C, Lv C and Zhou Q 2020 Phys. Rev. Lett. 125 253401

    Google Scholar Pub Med

    Lv C, Zhang R and Zhou Q 2020 Phys. Rev. Lett. 125 253002

    Google Scholar Pub Med

    Cheng Y T and Shi Z Y 2021 Phys. Rev. A 104 023307

    Google Scholar Pub Med

    Zhang J, Yang X, Lv C, Ma S and Zhang R 2022 Phys. Rev. A 106 013314

    Google Scholar Pub Med

    Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O and Arimondo E 2007 Phys. Rev. Lett. 99 220403

    Google Scholar Pub Med

    Kuhr S 2016 Nat. Sci. Rev. 3 170

    Google Scholar Pub Med

    Grossmann F, Dittrich T, Jung P and Hänggi P 1991 Phys. Rev. Lett. 67 516

    Google Scholar Pub Med

    Grossmann F and Hänggi P 1992 Europhys. Lett. 18 571

    Google Scholar Pub Med

    Kayanuma Y 1994 Phys. Rev. A 50 843

    Google Scholar Pub Med

    Della Valle G, Ornigotti M, Cianci E, Foglietti V, Laporta P and Longhi S 2007 Phys. Rev. Lett. 98 263601

    Google Scholar Pub Med

    Creffield C E 2007 Phys. Rev. Lett. 99 110501

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(97) PDF downloads(0) Cited by(0)

Access History

Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations

Fund Project: 

Abstract: Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications. In this work, we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions. We give the regimes for discrete modes, and find that the emission can be distinctly suppressed. The configuration induces a broad band, but few particles are ejected due to the interference of the matter waves. We further qualitatively model the emission process and demonstrate the short-time behaviors. This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices, and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.

Reference (59)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return