2024 Volume 33 Issue 8
Article Contents

Yunli Da(笪蕴力)1, †, Ruichun Luo(罗瑞春)1, †, Bao Lei(雷宝)1, Wei Ji(季威)2, and Wu Zhou(周武)1, ‡. 2024: Controlled fabrication of freestanding monolayer SiC by electron irradiation, Chinese Physics B, 33(8): 086802. doi: 10.1088/1674-1056/ad6132
Citation: Yunli Da(笪蕴力)1, †, Ruichun Luo(罗瑞春)1, †, Bao Lei(雷宝)1, Wei Ji(季威)2, and Wu Zhou(周武)1, ‡. 2024: Controlled fabrication of freestanding monolayer SiC by electron irradiation, Chinese Physics B, 33(8): 086802. doi: 10.1088/1674-1056/ad6132

Controlled fabrication of freestanding monolayer SiC by electron irradiation

  • Received Date: 05/06/2024
    Accepted Date: 26/06/2024
  • Fund Project:

    This research is financially supported by the Ministry of Science and Technology (MOST) of China (Grant No. 2018YFE0202700), the Beijing Outstanding Young Scientist Program (Grant No. BJJWZYJH01201914430039), the China National Postdoctoral Program for Innovative Talents (Grant No. BX2021301), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grants No. 22XNKJ30).

  • The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications. Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise. It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities. Here, we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane. By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope (STEM), we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice. The resultant SiC monolayers seamlessly connect with the graphene lattice, forming a planar structure distinct by a wide direct bandgap. Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion, providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional (2D) monolayers.
  • 加载中
  • Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666

    Google Scholar Pub Med

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197

    Google Scholar Pub Med

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109

    Google Scholar Pub Med

    Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805

    Google Scholar Pub Med

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699

    Google Scholar Pub Med

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033

    Google Scholar Pub Med

    Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151

    Google Scholar Pub Med

    Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F and Gao H J 2009 Adv. Mater. 21 2777

    Google Scholar Pub Med

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312

    Google Scholar Pub Med

    Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754

    Google Scholar Pub Med

    Zhou N, Yang R and Zhai T 2019 Mater. Today Nano 8 100051

    Google Scholar Pub Med

    Casady J B and Johnson R W 1996 Solid-State Electron. 39 1409

    Google Scholar Pub Med

    Wu R, Zhou K, Yue C Y, Wei J and Pan Y 2015 Prog. Mater. Sci. 72 1

    Google Scholar Pub Med

    Shi Z, Zhang Z, Kutana A and Yakobson B I 2015 ACS Nano 9 9802

    Google Scholar Pub Med

    Chabi S and Kadel K 2020 Nanomaterials 10 2226

    Google Scholar Pub Med

    Lin S S 2012 J. Phys. Chem. C 116 3951

    Google Scholar Pub Med

    Lin S, Zhang S, Li X, Xu W, Pi X, Liu X, Wang F, Wu H and Chen H 2015 J. Phys. Chem. C 119 19772

    Google Scholar Pub Med

    Susi T, Skakálová V, Mittelberger A, Kotrusz P, Hulman M, Pennycook T J, Mangler C, Kotakoski J and Meyer J C 2017 Sci. Rep. 7 4399

    Google Scholar Pub Med

    Polley C, Fedderwitz H, Balasubramanian T, Zakharov A, Yakimova R, Bäcke O, Ekman J, Dash S, Kubatkin S and Lara Avila S 2023 Phys. Rev. Lett. 130 076203

    Google Scholar Pub Med

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615

    Google Scholar Pub Med

    Xu M, Bao D L, Li A, Gao M, Meng D, Li A, Du S, Su G, Pennycook S J, Pantelides S T and Zhou W 2023 Nat. Mater. 22 612

    Google Scholar Pub Med

    Xu M, Li A, Pennycook S J, Gao S P and Zhou W 2023 Phys. Rev. Lett. 131 186202

    Google Scholar Pub Med

    Gonzalez-Martinez I G, Bachmatiuk A, Bezugly V, Kunstmann J, Gemming T, Liu Z, Cuniberti G and Ruemmeli M H 2016 Nanoscale 8 11340

    Google Scholar Pub Med

    Zhao X, Kotakoski J, Meyer J C, Sutter E, Sutter P, Krasheninnikov A V, Kaiser U and Zhou W 2017 MRS Bull. 42 667

    Google Scholar Pub Med

    Luo R, Gao M, Wang C, Zhu J, Guzman R and Zhou W 2024 Adv. Funct. Mater. 34 2307625

    Google Scholar Pub Med

    Ishikawa R, Mishra R, Lupini A R, Findlay S D, Taniguchi T, Pantelides S T and Pennycook S J 2014 Phys. Rev. Lett. 113 155501

    Google Scholar Pub Med

    Tripathi M, Mittelberger A, Pike N A, Mangler C, Meyer J C, Verstraete M J, Kotakoski J and Susi T 2018 Nano Lett. 18 5319

    Google Scholar Pub Med

    Yang S Z, Sun W, Zhang Y Y, Gong Y, Oxley M P, Lupini A R, Ajayan P M, Chisholm M F, Pantelides S T and Zhou W 2019 Phys. Rev. Lett. 122 106101

    Google Scholar Pub Med

    Su C, Tripathi M, Yan Q B, Wang Z, Zhang Z, Hofer C, Wang H, Basile L, Su G, Dong M, Meyer J C, Kotakoski J, Kong J, Idrobo J C, Susi T and Li J 2019 Sci. Adv. 5 eaav2252

    Google Scholar Pub Med

    Dyck O, Ziatdinov M, Lingerfelt D B, Unocic R R, HudaK B M, Lupini A R, Jesse S and Kalinin S V 2019 Nat. Rev. Mater. 4 497

    Google Scholar Pub Med

    Lehtinen O, Kurasch S, Krasheninnikov A and Kaiser U 2013 Nat. Commun. 4 2098

    Google Scholar Pub Med

    Pan Y, Lei B, Qiao J, Hu Z, Zhou W and Ji W 2020 Chin. Phys. B 29 086801

    Google Scholar Pub Med

    Lin Y C, Dumcenco D O, Huang Y S and Suenaga K 2014 Nat. Nanotechnol. 9 391

    Google Scholar Pub Med

    Lin J, Pantelides S T and Zhou W 2015 ACS Nano 9 5189

    Google Scholar Pub Med

    Hopkinson D G, Zolyomi V, Rooney A P, Clark N, Terry D J, Hamer M, Lewis D J, Allen C S, Kirkland A I, Andreev Y, Kudrynskyi Z, Kovalyuk Z, Patane A, Fal’ko V I, Gorbachev R and Haigh S J 2019 ACS Nano 13 5112

    Google Scholar Pub Med

    Zhao X, Ji Y, Chen J, Fu W, Dan J, Liu Y, Pennycook S J, Zhou W and Loh K P 2019 Adv. Mater. 31 1900237

    Google Scholar Pub Med

    Zhao J, Deng Q, Bachmatiuk A, Sandeep G, Popov A, Eckert J and Rümmeli M H 2014 Science 343 1228

    Google Scholar Pub Med

    Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S and Lupini A R 2014 Nat. Nanotechnol. 9 436

    Google Scholar Pub Med

    Lin J, Zhang Y, Zhou W and Pantelides S T 2016 ACS Nano 10 2782

    Google Scholar Pub Med

    Yin K, Zhang Y Y, Zhou Y, Sun L, Chisholm M F, Pantelides S T and Zhou W 2017 2D Mater. 4 011001

    Google Scholar Pub Med

    Zhao X, Dan J, Chen J, Ding Z, Zhou W, Loh K P and Pennycook S J 2018 Adv. Mater. 30 1707281

    Google Scholar Pub Med

    Sang X, Li X, Zhao W, Dong J, Rouleau C M, Geohegan D B, Ding F, Xiao K and Unocic R R 2018 Nat. Commun. 9 2051

    Google Scholar Pub Med

    Zhao X, Qiao J, Chan S M, Li J, Dan J, Ning S, Zhou W, Quek S Y, Pennycook S J and Loh K P 2021 Nano Lett. 21 3262

    Google Scholar Pub Med

    Clark N, Kelly D J, Zhou M, Zou Y C, Myung C W, Hopkinson D G, Schran C, Michaelides A, Gorbachev R and Haigh S J 2022 Nature 609 942

    Google Scholar Pub Med

    Van Winkle M, Dowlatshahi N, Khaloo N, Iyer M, Craig I M, Dhall R, Taniguchi T, Watanabe K and Bediako D K 2024 Nat. Nanotechnol. 19 751

    Google Scholar Pub Med

    Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S and Benner G 2012 Phys. Rev. Lett. 108 196102

    Google Scholar Pub Med

    Pennycook S J and Boatner L A 1988 Nature 336 565

    Google Scholar Pub Med

    Pennycook S J and Jesson D E 1991 Ultramicroscopy 37 14

    Google Scholar Pub Med

    Krivanek O L, Chisholm M F, Nicolosi V, Pennycook T J, Corbin G J, Dellby N, Murfitt M F, Own C S, Szilagyi Z S, Oxley M P, Pantelides S T and Pennycook S J 2010 Nature 464 571

    Google Scholar Pub Med

    Gong Y, Liu Z, Lupini A R, Shi G, Lin J, Najmaei S, Lin Z, Elias A L, Berkdemir A, You G, Terrones H, Terrones M, Vajtai R, Pantelides S T, Pennycook S J, Lou J, Zhou W and Ajayan P M 2014 Nano Lett. 14 442

    Google Scholar Pub Med

    Li S, Wang Y P, Ning S, Xu K, Pantelides S T, Zhou W and Lin J 2023 Nano Lett. 23 1298

    Google Scholar Pub Med

    Lee J, Yang Z, Zhou W, Pennycook S J, Pantelides S T and Chisholm M F 2014 Proc. Natl. Acad. Sci. USA 111 7522

    Google Scholar Pub Med

    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Hafner J 2008 J. Comput. Chem. 29 2044

    Google Scholar Pub Med

    Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515

    Google Scholar Pub Med

    Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(119) PDF downloads(0) Cited by(0)

Access History

Controlled fabrication of freestanding monolayer SiC by electron irradiation

Fund Project: 

Abstract: The design and preparation of novel quantum materials with atomic precision are crucial for exploring new physics and for device applications. Electron irradiation has been demonstrated as an effective method for preparing novel quantum materials and quantum structures that could be challenging to obtain otherwise. It features the advantages of precise control over the patterning of such new materials and their integration with other materials with different functionalities. Here, we present a new strategy for fabricating freestanding monolayer SiC within nanopores of a graphene membrane. By regulating the energy of the incident electron beam and the in-situ heating temperature in a scanning transmission electron microscope (STEM), we can effectively control the patterning of nanopores and subsequent growth of monolayer SiC within the graphene lattice. The resultant SiC monolayers seamlessly connect with the graphene lattice, forming a planar structure distinct by a wide direct bandgap. Our in-situ STEM observations further uncover that the growth of monolayer SiC within the graphene nanopore is driven by a combination of bond rotation and atom extrusion, providing new insights into the atom-by-atom self-assembly of freestanding two-dimensional (2D) monolayers.

Reference (57)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return