2024 Volume 33 Issue 10
Article Contents

Maoyang Li(李茂洋), Chaochao Mo(莫超超), Peiyu Ji(季佩宇), Xiaoman Zhang(张潇漫), Jiali Chen(陈佳丽), Lanjian Zhuge(诸葛兰剑), Xuemei Wu(吴雪梅), Haiyun Tan(谭海云), and Tianyuan Huang(黄天源). 2024: Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions, Chinese Physics B, 33(10): 108102. doi: 10.1088/1674-1056/ad62df
Citation: Maoyang Li(李茂洋), Chaochao Mo(莫超超), Peiyu Ji(季佩宇), Xiaoman Zhang(张潇漫), Jiali Chen(陈佳丽), Lanjian Zhuge(诸葛兰剑), Xuemei Wu(吴雪梅), Haiyun Tan(谭海云), and Tianyuan Huang(黄天源). 2024: Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions, Chinese Physics B, 33(10): 108102. doi: 10.1088/1674-1056/ad62df

Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions

  • Received Date: 10/05/2024
    Accepted Date: 03/07/2024
  • Fund Project:

    This work was supported by the National Key R&D Program of China (Grant No. 2022YFE03050001) and the National Natural Science Foundation of China (Grant Nos. 12175160 and 12305284).

  • We deposited indium-tin-oxide (ITO) films on silicon and quartz substrates by magnetron sputtering technology in pure argon. Using electrostatic quadrupole plasma diagnostic technology, we investigate the effects of discharge power and discharge pressure on the ion flux and energy distribution function of incidence on the substrate surface, with special attention to the production of high-energy negative oxygen ions, and elucidate the mechanism behind its production. At the same time, the structure and properties of ITO films are systematically characterized to understand the potential effects of high energy oxygen ions on the growth of ITO films. Combining with the kinetic property analysis of sputtering damage mechanism of transparent conductive oxide (TCO) thin films, this study provides valuable physical understanding of optimization of TCO thin film deposition process.
  • 加载中
  • Haschke J, Dupré O, Boccard M and Ballif C 2018 Solar Energy Mater. Solar Cells 187 140

    Google Scholar Pub Med

    Shen W Z, Zhao Y X and Liu F 2022 Front. Energy 17 9

    Google Scholar Pub Med

    Chavan G T, Kim Y, Khokhar M Q, Hussain S Q, Cho E C, Yi J, Ahmad Z, Rosaiah P and Jeon C W 2023 Nanomaterials 13 1226

    Google Scholar Pub Med

    Nunomura S, Sakata I and Matsubara K 2018 Phys. Rev. Appl. 10 054006

    Google Scholar Pub Med

    Le A H T, Dao V A, Pham D P, Kim S, Dutta S, Thi Nguyen C P, Lee Y, Kim Y and Yi J 2019 Solar Energy Mater. Solar Cells 192 36

    Google Scholar Pub Med

    Liu K, Chen B, Yu Z S J, Wu Y L, Huang Z T, Jia X H, Li C, Spronk D, Wang Z J, Wang Z G, Qu S C, Holman Z C and Huang J S 2022 J. Mater. Chem. A 10 1343

    Google Scholar Pub Med

    Linss V, Bivour M, Iwata H and Ortner K 2019 AIP Conf. Proc. 2147 040009

    Google Scholar Pub Med

    Macias-Montero M, Garcia-Garcia F J, Alvarez R, Gil-Rostra J, Gonzalez J C, Cotrino J, Gonzalez-Elipe A R and Palmero A 2012 J. Appl. Phys. 111 054312

    Google Scholar Pub Med

    Mrvaz S and Schneider J M 2006 J. Appl. Phys. 100 023503

    Google Scholar Pub Med

    Street R, Biegelsen D and Stuke J 1979 Philos. Mag. B 40 451

    Google Scholar Pub Med

    Ishibashi S, Higuchi Y, Ota Y and Nakamura K 1990 J. Vac. Sci. Technol. A 8 1403

    Google Scholar Pub Med

    Konishi T and Ohdaira K 2017 Thin Solid Films 635 73

    Google Scholar Pub Med

    Caudevilla D, García-Hemme E, San Andrés E, Pérez-Zenteno F, Torres I, Barrio R, García-Hernansanz R, Algaidy S, Olea J, Pastor D and del Prado A 2022 Mater. Sci. Semiconduct. Process. 137 106189

    Google Scholar Pub Med

    Tominaga K, Iwamura S, Fujita I, Shintani Y and Tada O 1982 Jpn. J. Appl. Phys. 21 999

    Google Scholar Pub Med

    Mráz S and Schneider J M 2006 Appl. Phys. Lett. 89 051502

    Google Scholar Pub Med

    Welzel T and Ellmer K 2011 Surf. Coat. Technol. 205 S294

    Google Scholar Pub Med

    Huang T, Mo C, Cui M, Li M, Ji P, Tan H, Zhang X, Zhuge L and Wu X 2024 Vacuum 221 112848

    Google Scholar Pub Med

    Pokorny P, Miyina M, Bulír J, Lančok J, Fitl P, Musil J and Novotny M 2011 Plasma Process. Polym. 8 459

    Google Scholar Pub Med

    Welzel T, Naumov S and Ellmer K 2011 J. Appl. Phys. 109 073302

    Google Scholar Pub Med

    Mahieu S, Leroy W P, Van Aeken K and Depla D 2009 J. Appl. Phys. 106 093302

    Google Scholar Pub Med

    Seeger S, Harbauer K and Ellmer K 2009 J. Appl. Phys. 105 053305

    Google Scholar Pub Med

    Zeuner M, Neumann H, Zalman J and Biederman H 1998 J. Appl. Phys. 83 5083

    Google Scholar Pub Med

    Tominaga K and Kikuma T 2001 J. Vac. Sci. Technol. A 19 1582

    Google Scholar Pub Med

    Welzel T and Ellmer K 2012 J. Vac. Sci. Technol. A 30 061306

    Google Scholar Pub Med

    Bowes M, Poolcharuansin P and Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045204

    Google Scholar Pub Med

    Mišina M, Bradley J W, Bäcker H, Aranda-Gonzalvo Y, Karkari S K and Forder D 2002 Vacuum 68 171

    Google Scholar Pub Med

    Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368

    Google Scholar Pub Med

    Huang M, Hameiri Z, Aberle A G and Mueller T 2015 Vacuum 121 187

    Google Scholar Pub Med

    Lei H, Ichikawa K, Hoshi Y, Wang M, Uchida T and Sawada Y 2010 Thin Solid Films 518 2926

    Google Scholar Pub Med

    Zhao M J, Zhang J F, Huang Q H, Wu W Y, Tseng M C, Lien S Y and Zhu W Z 2022 Vacuum 196 110762

    Google Scholar Pub Med

    Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang S C I, Shen Y and Tong Y 2013 Sci. Rep. 3 1021

    Google Scholar Pub Med

    Lei F, Sun Y, Liu K, Gao S, Liang L, Pan B and Xie Y 2014 J. Am. Chem. Soc. 136 6826

    Google Scholar Pub Med

    Zhao L, Zhou Z, Peng H and Cui R 2005 Appl. Surf. Sci. 252 385

    Google Scholar Pub Med

    Sezemsky P, Burnat D, Kratochvil J, Wulff H, Kruth A, Lechowicz K, Janik M, Bogdanowicz R, Cada M, Hubicka Z, Niedziałkowski P, Białobrzeska W, Stranak V and Smietana M 2021 Sens. Actuators B 343 130173

    Google Scholar Pub Med

    Huang M, Liu Y S, He Z B and Yi Y 2022 Chin. Phys. B 31 066101

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(32) PDF downloads(0) Cited by(0)

Access History

Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions

Fund Project: 

Abstract: We deposited indium-tin-oxide (ITO) films on silicon and quartz substrates by magnetron sputtering technology in pure argon. Using electrostatic quadrupole plasma diagnostic technology, we investigate the effects of discharge power and discharge pressure on the ion flux and energy distribution function of incidence on the substrate surface, with special attention to the production of high-energy negative oxygen ions, and elucidate the mechanism behind its production. At the same time, the structure and properties of ITO films are systematically characterized to understand the potential effects of high energy oxygen ions on the growth of ITO films. Combining with the kinetic property analysis of sputtering damage mechanism of transparent conductive oxide (TCO) thin films, this study provides valuable physical understanding of optimization of TCO thin film deposition process.

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return