2024 Volume 33 Issue 9
Article Contents

Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. 2024: Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film, Chinese Physics B, 33(9): 096805. doi: 10.1088/1674-1056/ad62e0
Citation: Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. 2024: Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film, Chinese Physics B, 33(9): 096805. doi: 10.1088/1674-1056/ad62e0

Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film

  • Received Date: 22/04/2024
    Accepted Date: 10/07/2024
  • Fund Project:

    Project supported by Samsung Research Fundings & Incubation Center of Samsung Electronics (Grant No. SRFCMA1702-01). Y.-M.K acknowledges partial support from the National Research Foundation of Korea (NRF) (Grant No. 2023R1A2C2002403) funded by the Korean government in Korea.

  • The functionalities and diverse metastable phases of multiferroic BiFeO$_{3}$ (BFO) thin films depend on the misfit strain. Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known, it is unclear whether a single-crystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs. Thus, understanding the strain relaxation behavior is key to elucidating the lattice strain-property relationship. In this study, a correlative strain analysis based on dark-field inline electron holography (DIH) and quantitative scanning transmission electron microscopy (STEM) was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film. The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief, forming irregularly strained nanodomains. The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale. The globally integrated strain for each nanodomain was estimated to be close to $-1.5%$, irrespective of the nanoscale strain states, which was consistent with the fully strained BFO film on the SrTiO$_{3}$ substrate. Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation. This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films, such as BFO, with various low-symmetry polymorphs.
  • 加载中
  • Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K and Triscone J M 2007 Annu. Rev. Mater. Res. 37 589

    Google Scholar Pub Med

    Hwang J, Feng Z, Charles N, Wang X R, Lee D, Stoerzinger K A, Muy S, Rao R R, Lee D, Jacobs R, Morgan D and Shao-Horn Y 2019 Mater. Today 31 100

    Google Scholar Pub Med

    Ederer C and Spaldin N A 2005 Phys. Rev. Lett. 95 257601

    Google Scholar Pub Med

    Catalan G, Lubk A, Vlooswiik A H G, Snoeck E, Magen C, Janssens A, Rispens G, Rijnders G, Blank D H A and Noheda B 2011 Nat. Mater. 10 963

    Google Scholar Pub Med

    Chu K, Jang B K, Sung J H, Shin Y A, Lee E S, Song K, Lee J H. Woo C S, Kim S J, Kim S J, Choi S Y, Koo T Y, Kim Y H, Oh S H, Jo M H and Yang C H 2015 Nat. Nanotechnol. 10 972

    Google Scholar Pub Med

    Jeon B C, Lee D, Lee M H, Yang S M, Chae S C, Song T K, Bu S D, Chung J S, Yoon J G and Noh T W 2013 Adv. Mater. 25 5643

    Google Scholar Pub Med

    Béa H, Dupé B, Fusil S, Mattana R, Jacquet E, Warot-Fonrose B, Wilhelm F, Rogaley A, Petit S, Cors V, Anane A, Petroff F, Bouzehouane K, Geneste G, Dkhil B, Lisenkov S, Ponomareva I, Bellaiche L, Bibes M and Barthelemy A 2009 Phys. Rev. Lett. 102 217603

    Google Scholar Pub Med

    Infante I C, Lisenkov S, Dupe B, Bibes M, Fusil S, Jacquet E, Geneste G, Petit S, Courtial A, Juraszek J, Bellaiche L, Barthelemy A and Dkhil B 2010 Phys. Rev. Lett. 105 057601

    Google Scholar Pub Med

    Sando D, Agbelele A, Daumont C, Rahmedov D, Ren W, Infante I C, Lisenkov S, Prosandeev S, Fusil S, Jacquet E, Carrétéro C, Petit S, Cazayous M, Juraszek J, Breton J M L, Bellaiche L, Dhkil B, Barthélémy A and Bibes M 2014 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 372 20120438

    Google Scholar Pub Med

    Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21

    Google Scholar Pub Med

    Dieguez O, Gonzalez-Vazquez O E, Wojdel J C and Iniguez J 2011 Phys. Rev. B 83 094106

    Google Scholar Pub Med

    Kim Y M, Kumar A, Hatt A, Morozovska A N, Tselev A, Biegalski M D, Ivanov I, Eliseev E A, Pennycook S J, Rondinelli J M, Kalinin S V and Borisevich A Y 2013 Adv. Mater. 25 2497

    Google Scholar Pub Med

    Christen H M, Nam J H, Kim H S, Hatt A J and Spaldin N A 2011 Phys. Rev. B 83 144107

    Google Scholar Pub Med

    Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W and Ramesh R 2009 Science 326 977

    Google Scholar Pub Med

    Chen Z, Luo A, Huang C, Yang Y Q P, You L, Hu C, Wu T, Wang J, Gao C, Sritharan T and Chen L 2011 Adv. Funct. Mater. 21 133

    Google Scholar Pub Med

    Rossell M D, Erni R, Prange M P, Idrobo J C, Luo W, Zeches R J, Pantelides S T and Ramesh R 2012 Phys. Rev. Lett. 108 047601

    Google Scholar Pub Med

    Yang Y, Schlepütz C M, Adamo C, Schlom D G and Clarke R 2013 APL Materials 1 052102

    Google Scholar Pub Med

    Saito K, Ulyanenkov A, Grossmann V, Ress H, Bruegemann L, Ohta H, Kurosawa T, Ueki S and Funakubo H 2006 Jpn. J. Appl. Phys. 45 7311

    Google Scholar Pub Med

    Kim D H, Lee H N, Biegalski M D and Christen H M 2008 Appl. Phys. Lett. 92 012911

    Google Scholar Pub Med

    Chu Y H, Zhao T, Cruz M P, Zhan Q, Yang P L, Martin L W, Huijben M, Yang C H, Zavaliche F, Zheng H and Ramesh R 2007 Appl. Phys. Lett. 90 252906

    Google Scholar Pub Med

    Lee H J, Lee S S, Kwak J H, Kim Y M, Jeong H Y, Borisevich A Y, Lee S Y, Noh D Y, Kwon O, Kim Y and Jo J Y 2016 Scientific Reports 6 38724

    Google Scholar Pub Med

    Fischer A, Kühne H and Richter H 1994 Phys. Rev. Lett. 73 2712

    Google Scholar Pub Med

    Kogan S M 1964 Sov. Phys. Solid State 5 2069

    Google Scholar Pub Med

    Lee D and Noh Tae W 2012 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 370 4944

    Google Scholar Pub Med

    Sando D, Barthelemy A and Bibes M 2014 J. Phys.-Condens. Matter 26 473201

    Google Scholar Pub Med

    Holcomb M B, Martin L W, Scholl A, He Q, Yu P, Yang C H, Yang S Y, Glans P A, Valvidares M, Huijben M, Kortright J B, Guo J, Chu Y H and Ramesh R 2010 Phys. Rev. B 81 134406

    Google Scholar Pub Med

    Lee S S, Kim YM, Lee H J, Seo O, Jeong H Y, He Q, Borisevich A Y, Kang B, Kwon O, Kang S, Kim Y, Koo T Y, Rhyee J S, Noh D Y, Cho B, Seo J H, Lee J H and Jo J Y 2018 Adv. Funct. Mater. 28 1800839

    Google Scholar Pub Med

    Infante I C, Lisenkov S, Dupé B, Bibes M, Fusil S, Jacquet E, Geneste G, Petit S, Courtial A, Juraszek J, Bellaiche L, Barthélémy A and Dkhil B 2010 Phys. Rev. Lett. 105 057601

    Google Scholar Pub Med

    Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P, Toulouse C, Infante I C, Pyatakov A P, Fusil S, Jacquet E, Carretero C, Deranlot C, Lisenkov S, Wang D, Le Breton J M, Cazayous M, Sacuto A, Juraszek J, Zvezdin A K, Bellaiche L, Dkhil B, Barthelemy A and Bibes M 2013 Nat. Mater. 12 641

    Google Scholar Pub Med

    Sando D, Xu B, Bellaiche L and Nagarajan V 2016 Appl. Phys. Rev. 3 011106

    Google Scholar Pub Med

    Huang C W, Chu Y H, Chen Z H, Wang J, Sritharan T, He Q, Ramesh R and Chen L 2010 Appl. Phys. Lett. 97 152901

    Google Scholar Pub Med

    Rana D S, Takahashi K, Mavani K R, Kawayama I, Murakami H, Tonouchi M, Yanagida T, Tanaka H and Kawai T 2007 Phys. Rev. B 75 060405

    Google Scholar Pub Med

    Catalan G, Sinnamon L J and Gregg J M 2004 J. Phys.-Condes. Matter 16 2253

    Google Scholar Pub Med

    Catalan G, Noheda B, McAnney J, Sinnamon L J and Gregg J M 2005 Phys. Rev. B 72 020102

    Google Scholar Pub Med

    Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F and Noh T W 2011 Phys. Rev. Lett. 107 057602

    Google Scholar Pub Med

    Kim Y M, He J, Biegalski M D, Ambaye H, Lauter V, Christen H M, Pantelides S T, Pennycook S J, Kalinin S V and Borisevich A Y 2012 Nat. Mater. 11 888

    Google Scholar Pub Med

    Kim Y M, Morozovska A, Eliseev E, Oxley M P, Mishra R, Selbach S M, Grande T, Pantelides S T, Kalinin S V and Borisevich A Y 2014 Nat. Mater. 13 1019

    Google Scholar Pub Med

    Hatt A J, Spaldin N A and Ederer C 2010 Phys. Rev. B 81 054109

    Google Scholar Pub Med

    Hÿtch M J, Putaux JL and Peńisson JM 2003 Nature 423 270

    Google Scholar Pub Med

    Tang Y L, Zhu Y L, Liu Y, Wang Y J and Ma X L 2017 Nat. Commun. 8 15994

    Google Scholar Pub Med

    Kim Y M, Lee S B, Lee J and Oh S H 2019 Nanoscale 11 8281

    Google Scholar Pub Med

    Lee J K, Park B, Song K, Jung W Y, Tyutyunnikov D, Yang T, Koch C T, Park C G, van Aken P A, Kim YM, Kim J K, Bang J, Chen L Q and Oh S H 2018 Acta. Mater. 145 109

    Google Scholar Pub Med

    Zhang N and Asle Zaeem M 2019 npj Comput. Mater. 5 54

    Google Scholar Pub Med

    Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press)

    Google Scholar Pub Med

    Daumont C J M, Farokhipoor S, Ferri A, WojdełJ C, Íniguez J, Kooi B J and Noheda B 2010 Phys. Rev. B 81 144115

    Google Scholar Pub Med

    Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L and Chen L 2011 Phys. Rev. B 84 094116

    Google Scholar Pub Med

    Borisevich A Y, Eliseev E A, Morozovska A N, Cheng C J, Lin J Y, Chu Y H, Kan D, Takeuchi I, Nagarajan V and Kalinin S V 2012 Nat. Commun. 3 775

    Google Scholar Pub Med

    Koch C T 2002 Determination of core structure periodicity and point defect density along dislocation (Ph. D. Dissertation) (Arizona: Arizona State University) (in USA)

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1993 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(57) PDF downloads(0) Cited by(0)

Access History

Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film

Fund Project: 

Abstract: The functionalities and diverse metastable phases of multiferroic BiFeO$_{3}$ (BFO) thin films depend on the misfit strain. Although mixed phase-induced strain relaxation in multiphase BFO thin films is well known, it is unclear whether a single-crystalline BFO thin film can accommodate misfit strain without the involvement of its polymorphs. Thus, understanding the strain relaxation behavior is key to elucidating the lattice strain-property relationship. In this study, a correlative strain analysis based on dark-field inline electron holography (DIH) and quantitative scanning transmission electron microscopy (STEM) was performed to reveal the structural mechanism for strain accommodation of a single-crystalline BFO thin film. The nanoscale DIH strain analysis results indicated a random combination of multiple strain states that acted as a primary strain relief, forming irregularly strained nanodomains. The STEM-based bond length measurement of the corresponding strained nanodomains revealed a unique strain accommodation behavior achieved by a statistical combination of multiple modes of distorted structures on the unit-cell scale. The globally integrated strain for each nanodomain was estimated to be close to $-1.5%$, irrespective of the nanoscale strain states, which was consistent with the fully strained BFO film on the SrTiO$_{3}$ substrate. Density functional theory calculations suggested that strain accommodation by the combination of metastable phases was energetically favored compared to single-phase-mediated relaxation. This discovery allows a comprehensive understanding of strain accommodation behavior in ferroelectric oxide films, such as BFO, with various low-symmetry polymorphs.

Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return