2024 Volume 33 Issue 10
Article Contents

Zhide Yu(余智德) and Lingbo Xia(夏凌波)†. 2024: Three-dimensional topological crystalline insulator without spin-orbit coupling in nonsymmorphic photonic metacrystal, Chinese Physics B, 33(10): 104209. doi: 10.1088/1674-1056/ad6a3e
Citation: Zhide Yu(余智德) and Lingbo Xia(夏凌波)†. 2024: Three-dimensional topological crystalline insulator without spin-orbit coupling in nonsymmorphic photonic metacrystal, Chinese Physics B, 33(10): 104209. doi: 10.1088/1674-1056/ad6a3e

Three-dimensional topological crystalline insulator without spin-orbit coupling in nonsymmorphic photonic metacrystal

  • Received Date: 10/07/2024
    Accepted Date: 28/07/2024
  • Fund Project:

    Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12104148) and the Fundamental Research Funds for the Central Universities (Grant No. 531118010565).

  • By including certain point group symmetry in the classification of band topology, Fu proposed a class of three-dimensional topological crystalline insulators (TCIs) without spin-orbit coupling in 2011. In Fu's model, surface states (if present) doubly degenerate at $\bar{\varGamma }$ and $\bar{M}$ when time-reversal and $C_{4}$ symmetries are preserved. The analogs of Fu's model with surface states quadratically degenerate at $\bar{M}$ are widely studied, while surface states with quadratic degeneracy at $\bar{\varGamma }$ are rarely reported. In this study, we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designed nonsymmorphic photonic metacrystal. The surface states of photonic TCIs exhibit quadratic band degeneracy in the (001) surface Brillouin zone (BZ) center ($\bar{\varGamma }$ point). The gapless surface states and their quadratic dispersion are protected by $C_{4}$ and time-reversal symmetries, which correspond to the nontrivial band topology characterized by ${Z}_{{2}}$ topological invariant. Moreover, the surface states along lines from $\bar{\varGamma }$ to the (001) surface BZ boundary exhibit zigzag feature, which is interpreted from symmetry perspective by building composite operators constructed by the product of glide symmetries with time-reversal symmetry. The metacrystal array surrounded with air possesses high order hinge states with electric fields highly localized at the hinge that may apply to optical sensors. The gapless surface states and hinge states reside in a clean frequency bandgap. The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor (PEC), which provide a pathway for topologically manipulating light propagation in photonic devices.
  • 加载中
  • Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    Google Scholar Pub Med

    John 1987 Phys. Rev. Lett. 58 2486

    Google Scholar Pub Med

    Yablonovitch, Gmitter and Leung 1991 Phys. Rev. Lett. 67 2295

    Google Scholar Pub Med

    Vinogradov A P, Dorofeenko A V, Merzlikin A M and Lisyansky 2010 Phys.-Usp. 53 243

    Google Scholar Pub Med

    Qi M, Lidorikis E, Rakich P T, Johnson S G, Joannopoulos J D, Ippen E P and Smith H I 2004 Nature 429 538

    Google Scholar Pub Med

    Noda S, Fujita M and Asano T 2007 Nat. Photon. 1 449

    Google Scholar Pub Med

    Rinne S A, García-Santamaría F and Braun P V 2008 Nat. Photon. 2 52

    Google Scholar Pub Med

    López C 2003 Adv. Mater. 15 1679

    Google Scholar Pub Med

    Butt M A, Khonina S N and Kazanskiy N L 2021 Opt. Laser Technol. 142 107265

    Google Scholar Pub Med

    Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802

    Google Scholar Pub Med

    Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757

    Google Scholar Pub Med

    Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature 461 772

    Google Scholar Pub Med

    Wu L H and Hu X 2015 Phys. Rev. Lett. 114 223901

    Google Scholar Pub Med

    Yang Y, Gao Z, Xue H, Zhang L, He M, Yang Z, Singh R, Chong Y, Zhang B and Chen H 2019 Nature 565 622

    Google Scholar Pub Med

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O and Carusotto I 2019 Rev. Mod. Phys. 91 015006

    Google Scholar Pub Med

    Chen X D, He X T and Dong J W 2019 Laser Photon. Rev. 13 1900091

    Google Scholar Pub Med

    Kim M, Jacob Z and Rho J 2020 Light Sci. Appl. 9 130

    Google Scholar Pub Med

    Huang J, Zhang T, Xu S, et al. 2023 Chin. Phys. Lett. 40 047101

    Google Scholar Pub Med

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233

    Google Scholar Pub Med

    Ma T, Khanikaev A B, Mousavi S H and Shvets G 2015 Phys. Rev. Lett. 114 127401

    Google Scholar Pub Med

    Slobozhanyuk A, Mousavi S H, Ni X, Smirnova D, Kivshar Y S and Khanikaev A B 2016 Nat. Photon. 11 130

    Google Scholar Pub Med

    Fu L 2011 Phys. Rev. Lett. 106 106802

    Google Scholar Pub Med

    Yannopapas V 2011 Phys. Rev. B 84 195126

    Google Scholar Pub Med

    Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nat. Commun. 3 982

    Google Scholar Pub Med

    Alexandradinata A and Bernevig B A 2016 Phys. Rev. B 93 205104

    Google Scholar Pub Med

    Alexandradinata A, Höller J, Wang C, Cheng H B and Lu L 2020 Phys. Rev. B 102 115117

    Google Scholar Pub Med

    Kobayashi S and Furusaki A 2021 Phys. Rev. B 104 195114

    Google Scholar Pub Med

    Kim M, Wang Z, Yang Y, Teo H T, Rho J and Zhang B 2022 Nat Commun. 13 3499

    Google Scholar Pub Med

    Liu C X, Zhang R X and VanLeeuwen B K 2014 Phys. Rev. B 90 085304

    Google Scholar Pub Med

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D and Soljačić M 2016 Nat. Phys. 12 337

    Google Scholar Pub Med

    Wang H X, Chen Y, Hang Z H, Kee H Y and Jiang J H 2017 npj Quantum Mater. 2 54

    Google Scholar Pub Med

    Aroyo M I, Kirov A, Capillas C, Perez-Mato J M and Wondratschek H 2006 Acta Crystallogr. A 62 115

    Google Scholar Pub Med

    Xia L, Guo Q, Yang B, Han J, Liu C X, Zhang W and Zhang S 2019 Phys. Rev. Lett. 122 103903

    Google Scholar Pub Med

    Long S, Yang J, Wang H Y, Yu Z D, Yang B, Guo Q H, Xiang Y J, Xia L B and Zhang S 2023 Opt. Lett. 48 2349

    Google Scholar Pub Med

    Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346

    Google Scholar Pub Med

    Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(82) PDF downloads(1) Cited by(0)

Access History

Three-dimensional topological crystalline insulator without spin-orbit coupling in nonsymmorphic photonic metacrystal

Fund Project: 

Abstract: By including certain point group symmetry in the classification of band topology, Fu proposed a class of three-dimensional topological crystalline insulators (TCIs) without spin-orbit coupling in 2011. In Fu's model, surface states (if present) doubly degenerate at $\bar{\varGamma }$ and $\bar{M}$ when time-reversal and $C_{4}$ symmetries are preserved. The analogs of Fu's model with surface states quadratically degenerate at $\bar{M}$ are widely studied, while surface states with quadratic degeneracy at $\bar{\varGamma }$ are rarely reported. In this study, we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designed nonsymmorphic photonic metacrystal. The surface states of photonic TCIs exhibit quadratic band degeneracy in the (001) surface Brillouin zone (BZ) center ($\bar{\varGamma }$ point). The gapless surface states and their quadratic dispersion are protected by $C_{4}$ and time-reversal symmetries, which correspond to the nontrivial band topology characterized by ${Z}_{{2}}$ topological invariant. Moreover, the surface states along lines from $\bar{\varGamma }$ to the (001) surface BZ boundary exhibit zigzag feature, which is interpreted from symmetry perspective by building composite operators constructed by the product of glide symmetries with time-reversal symmetry. The metacrystal array surrounded with air possesses high order hinge states with electric fields highly localized at the hinge that may apply to optical sensors. The gapless surface states and hinge states reside in a clean frequency bandgap. The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor (PEC), which provide a pathway for topologically manipulating light propagation in photonic devices.

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return