2024 Volume 33 Issue 10
Article Contents

Si-Qi Zhang(张思琪), Jun Zhang(张军), Xin-Yu Hao(郝欣宇), Jing Guo(郭静), Aihua Liu(刘爱华), and Xue-Shen Liu(刘学深). 2024: Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses, Chinese Physics B, 33(10): 103301. doi: 10.1088/1674-1056/ad6b81
Citation: Si-Qi Zhang(张思琪), Jun Zhang(张军), Xin-Yu Hao(郝欣宇), Jing Guo(郭静), Aihua Liu(刘爱华), and Xue-Shen Liu(刘学深). 2024: Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses, Chinese Physics B, 33(10): 103301. doi: 10.1088/1674-1056/ad6b81

Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses

  • Received Date: 18/04/2024
    Accepted Date: 16/07/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11974007, 12074146, 12074142, 61575077, 12374265, 11947243, 91850114, and 11774131) and the Natural Science Foundation of Jilin Province of China (Grant No. 20220101016JC).

  • Molecular-frame photoelectron momentum distributions (MF-PMDs) have been studied for imaging molecular structures. We investigate the MF-PMDs of CO$_{2}$ molecules exposed to circularly polarized (CP) attosecond laser pulses by solving the time-dependent Schrödinger equations based on the single-active-electron approximation frames. Results show that high-frequency photons lead to photoelectron diffraction patterns, indicating molecular orbitals. These diffraction patterns can be illustrated by the ultrafast photoionization models. However, for the driving pulses with 30 nm, a deviation between MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because the Coulomb effect strongly influences the molecular photoionization. Meanwhile, the MF-PMDs rotate in the same direction as the helicity of driving laser pulses. Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superposition of those in the parallel and perpendicular linearly polarized cases. The simulations efficiently visualize molecular orbital geometries and structures by ultrafast photoelectron imaging. Furthermore, we determine the contribution of HOMO and HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.
  • 加载中
  • Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545

    Google Scholar Pub Med

    Messina F, Bräm O, Cannizzo A and Chergui M 2013 Nat. Commun. 4 2119

    Google Scholar Pub Med

    Wang L, Wang X, Xiao F, Wang J, Tao W, Zhang D and Zhao Z 2023 Chin. Phys. Lett. 40 113201

    Google Scholar Pub Med

    Zhao J, Liu J, Wang X, Yuan J and Zhao Z 2022 Chin. Phys. Lett. 39 123201

    Google Scholar Pub Med

    Tanaka H, Yabashi M, Asaka T, et al. 2012 Nat. Photon. 6 540

    Google Scholar Pub Med

    Xu J, Blaga C I, Agostini P and DiMauro L F 2016 J. Phys. B: At. Mol. Opt. Phys. 49 112001

    Google Scholar Pub Med

    Nan Q W, Wang C, Yu X Y, Zhao X, Cheng Y, Gong M, Liu X J, Kimberg V and Zhang S B 2023 Chin. Phys. Lett. 40 093201

    Google Scholar Pub Med

    Küpper J, Stern S, Holmegaard L, et al. 2014 Phys. Rev. Lett. 112 083002

    Google Scholar Pub Med

    Jiang Y H, Rudenko A, Plésiat E, et al. 2010 Phys. Rev. A 81 021401

    Google Scholar Pub Med

    Underwood J G and Reid K L 2000 J. Chem. Phys. 113 1067

    Google Scholar Pub Med

    Pullen M G, Wolter B, Le A T, et al. 2015 Nat. Commun. 6 7262

    Google Scholar Pub Med

    Odenweller M, Takemoto N, Vredenborg A, et al. 2011 Phys. Rev. Lett. 107 143004

    Google Scholar Pub Med

    Lei Z X, Xu Q Y, Yang Z J, He Y L and Guo J 2022 Chin. Phys. B 31 063202

    Google Scholar Pub Med

    Yang H, Liu X, Zhu F, Jiao L and Liu A 2024 Chin. Phys. B 33 013303

    Google Scholar Pub Med

    Mauritsson J, Remetter T, Swoboda M, et al. 2010 Phys. Rev. Lett. 105 053001

    Google Scholar Pub Med

    Zuo T, Bandrauk A D and Corkum P B 1996 Chem. Phys. Lett. 259 313

    Google Scholar Pub Med

    Meckel M, Comtois D, Zeidler D, et al. 2008 Science 320 1478

    Google Scholar Pub Med

    Peters M, Nguyen-Dang T T, Charron E, Keller A and Atabek O 2012 Phys. Rev. A 85 053417

    Google Scholar Pub Med

    Yuan K J, Lu H and Bandrauk A D 2011 Phys. Rev. A 83 043418

    Google Scholar Pub Med

    Dou Y, Fang Y, Ge P and Liu Y 2023 Chin. Phys. Lett. 40 033201

    Google Scholar Pub Med

    Geng L, Liang H and Peng L Y 2022 Chin. Phys. Lett. 39 044203

    Google Scholar Pub Med

    Peters M, Nguyen-Dang T T, Cornaggia C, Saugout S, Charron E, Keller A and Atabek O 2011 Phys. Rev. A 83 051403

    Google Scholar Pub Med

    Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003

    Google Scholar Pub Med

    Pengel D, Kerbstadt S, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. A 96 043426

    Google Scholar Pub Med

    Ma M Y, Wang J P, Jing W Q, Guan Z, Jiao Z H, Wang G L, Chen J H and Zhao S F 2021 Opt. Express 29 33245

    Google Scholar Pub Med

    Djiokap J M N, Meremianin A V, Manakov N L, Hu S X, Madsen L B and Starace A F 2017 Phys. Rev. A 96 013405

    Google Scholar Pub Med

    Skruszewicz S, Tiggesbäumker J, Meiwes-Broer K H, Arbeiter M, Fennel T and Bauer D 2015 Phys. Rev. Lett. 115 043001

    Google Scholar Pub Med

    Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903

    Google Scholar Pub Med

    van der Zwan E V and Lein M 2010 Phys. Rev. A 82 033405

    Google Scholar Pub Med

    Lai X and Figueira de Morisson Faria C 2013 Phys. Rev. A 88 013406

    Google Scholar Pub Med

    Hu S, Chen J, Hao X and Li W 2016 Phys. Rev. A 93 023424

    Google Scholar Pub Med

    Ilchen M, Glaser L, Scholz F, et al. 2014 Phys. Rev. Lett. 112 023001

    Google Scholar Pub Med

    Ansari Z, Böttcher M, Manschwetus B, et al. 2008 New J. Phys. 10 093027

    Google Scholar Pub Med

    Kunitski M, Eicke N, Huber P, et al. 2019 Nat. Commun. 10 1

    Google Scholar Pub Med

    Okunishi M, Itaya R, Shimada K, et al. 2009 Phys. Rev. Lett. 103 043001

    Google Scholar Pub Med

    Busuladžić M, Gazibegović-Busuladžić A, Milošević D B and Becker W 2008 Phys. Rev. Lett. 100 203003

    Google Scholar Pub Med

    Hässig M, Altwegg K, Balsiger H, et al. 2015 Science 347 aaa0276

    Google Scholar Pub Med

    Zhu X, Liu X, Li Y, Qin M, Zhang Q, Lan P and Lu P 2015 Phys. Rev. A 91 043418

    Google Scholar Pub Med

    Hu S L, Zhao Z X and Shi T Y 2013 Chin. Phys. Lett. 30 103103

    Google Scholar Pub Med

    Li Y, Qin M, Zhu X, Zhang Q, Lan P and Lu P 2015 Opt. Express 23 10687

    Google Scholar Pub Med

    https://webbook.nist.gov/chemistry/

    Google Scholar Pub Med

    Feit M D, Fleck J A and Steiger A 1982 J. Comput. Phys. 47 412

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(56) PDF downloads(0) Cited by(0)

Access History

Photoelectron momentum distributions of triatomic CO2 molecules by circularly polarized attosecond pulses

Fund Project: 

Abstract: Molecular-frame photoelectron momentum distributions (MF-PMDs) have been studied for imaging molecular structures. We investigate the MF-PMDs of CO$_{2}$ molecules exposed to circularly polarized (CP) attosecond laser pulses by solving the time-dependent Schrödinger equations based on the single-active-electron approximation frames. Results show that high-frequency photons lead to photoelectron diffraction patterns, indicating molecular orbitals. These diffraction patterns can be illustrated by the ultrafast photoionization models. However, for the driving pulses with 30 nm, a deviation between MF-PMDs and theoretically predicted results of the ultrafast photoionization models is produced because the Coulomb effect strongly influences the molecular photoionization. Meanwhile, the MF-PMDs rotate in the same direction as the helicity of driving laser pulses. Our results also demonstrate that the MF-PMDs in a CP laser pulse are the superposition of those in the parallel and perpendicular linearly polarized cases. The simulations efficiently visualize molecular orbital geometries and structures by ultrafast photoelectron imaging. Furthermore, we determine the contribution of HOMO and HOMO-1 orbitals to ionization by varying the relative phase and the ratio of these two orbitals.

Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return