2024 Volume 33 Issue 10
Article Contents

Jin Zhan(湛劲), Yi Wang(王一), Xianjie Wang(王先杰), Hanxu Zhang(张晗旭), Senyin Zhu(朱森寅), Lingli Zhang(张伶莉), Lingling Tao(陶玲玲), Yu Sui(隋郁), Wenqing He(何文卿), Caihua Wan(万蔡华), Xiufeng Han(韩秀峰), V. I. Belotelov, and Bo Song(宋波). 2024: Low Gilbert damping in Bi/In-doped YIG thin films with giant Faraday effect, Chinese Physics B, 33(10): 107505. doi: 10.1088/1674-1056/ad6b84
Citation: Jin Zhan(湛劲), Yi Wang(王一), Xianjie Wang(王先杰), Hanxu Zhang(张晗旭), Senyin Zhu(朱森寅), Lingli Zhang(张伶莉), Lingling Tao(陶玲玲), Yu Sui(隋郁), Wenqing He(何文卿), Caihua Wan(万蔡华), Xiufeng Han(韩秀峰), V. I. Belotelov, and Bo Song(宋波). 2024: Low Gilbert damping in Bi/In-doped YIG thin films with giant Faraday effect, Chinese Physics B, 33(10): 107505. doi: 10.1088/1674-1056/ad6b84

Low Gilbert damping in Bi/In-doped YIG thin films with giant Faraday effect

  • Received Date: 21/05/2024
    Accepted Date: 15/07/2024
  • Fund Project:

    This work was supported by the National Key Research and Development Program of China (Grant No. 2023YFE0201000), the National Science Fund for Distinguished Young Scholars (Grant No. 52225201), the National Natural Science Foundation of China (Grant Nos. 52372004 and 52072085), the Fundamental Research Funds for the Central Universities (Grant Nos. 2023FRFK06001 and HIT.BRET.2022001), and Heilongjiang Touyan Innovation Team Program.

  • Magnetic films with low Gilbert damping are crucial for magnonic devices, which provide a promising platform for realizing ultralow-energy devices. In this study, low Gilbert damping and coercive field were observed in Bi/In-doped yttrium iron garnet (BiIn:YIG) thin films. The BiIn:YIG (444) films were deposited onto different substrates using pulsed laser deposition. Low coercivity ($<$1 Oe) with saturation magnetization of 125.09 emu/cc was achieved along the in-plane direction of BiIn:YIG film. The values of Gilbert damping and inhomogeneous broadening of ferromagnetic resonance in BiIn:YIG films were obtained to be as low as $4.05\times 10^{-4}$ and 5.62 Oe, respectively. In addition to low damping, the giant Faraday rotation angles (up to $2.9\times 10^{4}$ deg/cm) were also observed in the BiIn:YIG film. By modifying the magnetic structure and coupling effect between Bi$^{3+}$ and Fe$^{3+}$ of Bi:YIG, doped In$^{3+}$ plays a key role on variation of the magnetic properties. The low damping and giant Faraday effect made the BiIn:YIG film an appealing candidate for magnonic and magneto-optical devices.
  • 加载中
  • Zhang S S L and Zhang S 2012 Phys. Rev. Lett. 109 096603

    Google Scholar Pub Med

    Zhang S S L and Zhang S 2012 Phys. Rev. B 86 214424

    Google Scholar Pub Med

    Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X and Han X F 2018 Phys. Rev. Lett. 120 097205

    Google Scholar Pub Med

    Guo C Y, Wan C H, Wang X, Fang C, Tang P, Kong W J, Zhao M K, Jiang L N, Tao B S and Yu G Q 2018 Phys. Rev. B 98 134426

    Google Scholar Pub Med

    He W, Wu H, Guo C, Wan C, Zhao M, Xing Y, Tang P, Yan Z, Xia J and Yu T 2021 Appl. Phys. Lett. 119 212410

    Google Scholar Pub Med

    Guo C Y, Wan C H, He W Q, Zhao M K, Yan Z R, Xing Y W, Wang X, Tang P, Liu Y Z and Zhang S 2020 Nat. Electron. 3 304

    Google Scholar Pub Med

    Wang C, Cao Y, Wang X R and Yan P 2018 Phys. Rev. B 98 144417

    Google Scholar Pub Med

    Lin W, Chen K, Zhang S and Chien C L 2016 Phys. Rev. Lett. 116 186601

    Google Scholar Pub Med

    Nozue T, Kikkawa T, Watamura T, Niizeki T, Ramos R, Saitoh E and Murakami H 2018 Appl. Phys. Lett. 113 262402

    Google Scholar Pub Med

    Hu Y, Weir M P, Pereira H J, Amin O J, Pitcairn J, Cliffe M J, Rushforth A W, Kunakova G, Niherysh K, Korolkov V, Kertfoot J, Makarovsky O and Woodward S 2023 Appl. Phys. Lett. 123 223902

    Google Scholar Pub Med

    Hansen P, Witter K and Tolksdorf W 1983 Phys. Rev. B 27 6608

    Google Scholar Pub Med

    Matsumoto K, Sasaki S, Haraga K I, Yamaguchi K, Fujii T and Asahara Y 1992 J. Appl. Phys. 71 2467

    Google Scholar Pub Med

    Fakhrul T, Tazlaru S, Beran L, Zhang Y, Veis M and Ross C A 2019 Adv. Opt. Mater. 7 1900056

    Google Scholar Pub Med

    Wittekoek S, Popma T J, Robertson J and Bongers P 1975 Phys. Rev. B 12 2777

    Google Scholar Pub Med

    Fan Y, Gross M J, Fakhrul T, Finley J, Hou J T, Ngo S, Liu L and Ross C A 2023 Nat. Nanotechnol. 18 1000

    Google Scholar Pub Med

    Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J and Beach G S D 2020 Science 370 1438

    Google Scholar Pub Med

    Kirihara A, Uchida K i, Kajiwara Y, Ishida M, Nakamura Y, Manako T, Saitoh E and Yorozu S 2012 Nat. Mater. 11 686

    Google Scholar Pub Med

    Fakhrul T, Khurana B, Nembach H T, Shaw J M, Fan Y, Riley G A, Liu L and Ross C A 2023 Adv. Mater. Interfaces 10 2300217

    Google Scholar Pub Med

    Siegel G, Prestgard M C, Teng S and Tiwari A 2014 Sci. Rep. 4 4429

    Google Scholar Pub Med

    Kikuchi D, Ishida M, Uchida K, Qiu Z, Murakami T and Saitoh E 2015 Appl. Phys. Lett. 106 082401

    Google Scholar Pub Med

    Merbouche H, Divinskiy B, Gouéré D, Lebrun R, El Kanj A, Cros V, Bortolotti P, Anane A, Demokritov S O and Demidov V E 2024 Nat. Commun. 15 1560

    Google Scholar Pub Med

    Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebour- geois R, Ben Youssef J, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355

    Google Scholar Pub Med

    Alam M S, Wang C, Chen J, Zhang J, Liu C, Xiao J, Wu Y, Bi L and Yu H 2019 Phys. Lett. A 383 366

    Google Scholar Pub Med

    Zhou L, Song H, Liu K, Luan Z, Wang P, Sun L, Jiang S, Xiang H, Chen Y and Du J 2018 Sci. Adv. 4 eaao3318

    Google Scholar Pub Med

    Zhang H X, Zhu S Y, Zhan J, Wang X J, Wang Y, Yao T, Mezin N I and Song B 2023 Chin. Phys. Lett. 40 127801

    Google Scholar Pub Med

    Sun Y, Song Y Y, Chang H, Kabatek M, Jantz M, Schneider W, Wu M, Schultheiss H and Hoffmann A 2012 Appl. Phys. Lett. 101 152405

    Google Scholar Pub Med

    Liu T, Chang H, Vlaminck V, Sun Y, Kabatek M, Hoffmann A, Deng L and Wu M 2014 J. Appl. Phys. 115 17A501

    Google Scholar Pub Med

    Nazlan R, Hashim M, Ibrahim I R, Mohd Idris F, Wan Ab Rahman W N, Abdullah N H, Ismail I, Kanagesan S, Abbas Z and Azis R S 2015 J. Mater. Sci.: Mater. Electron. 26 3596

    Google Scholar Pub Med

    Jia Y, Liang Z, Pan H, Wang Q, Lv Q, Yan Y, Jin F, Hou D, Wang L and Wu W 2023 Chin. Phys. B 32 027501

    Google Scholar Pub Med

    Yang Q H, Zhnag H W, Wen Q Y, Liu Y L, Ihor M S and Ihor I S 2009 Chin. Phys. Lett. 26 047401

    Google Scholar Pub Med

    Ibrahim N B, Edwards C and Palmer S B 2000 J. Magn. Magn. Mater. 220 183

    Google Scholar Pub Med

    Krishnan R 1977 Appl. Phys. Lett. 31 237

    Google Scholar Pub Med

    Geller S and Gilleo M A 1957 J. Phys. Chem. Solids 3 30

    Google Scholar Pub Med

    Geschwind S 1961 J. Appl. Phys. 32 S263

    Google Scholar Pub Med

    Gallagher J C, Yang A S, Brangham J T, Esser B D, White S P, Page M R, Meng K Y, Yu S, Adur R and Ruane W 2016 Appl. Phys. Lett. 109 072401

    Google Scholar Pub Med

    Lin Y, Jin L, Zhang H, Zhong Z, Yang Q, Rao Y and Li M 2020 J. Magn. Magn. Mater. 496 165886

    Google Scholar Pub Med

    Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017

    Google Scholar Pub Med

    Gilleo M A and Geller S 1958 J. Appl. Phys. 29 380

    Google Scholar Pub Med

    Hauser C, Richter T, Homonnay N, Eisenschmidt C, Qaid M, Deniz H, Hesse D, Sawicki M, Ebbinghaus S G and Schmidt G 2016 Sci. Rep. 6 20827

    Google Scholar Pub Med

    Kumar R, Samantaray B and Hossain Z 2019 J. Phys.: Condens. Matter 31 435802

    Google Scholar Pub Med

    Gurjar G, Sharma V, Patnaik S and Kuanr B K 2021 Mater. Res. Express 8 066401

    Google Scholar Pub Med

    Petit S, Baraduc C, Thirion C, Ebels U, Liu Y, Li M, Wang P and Dieny B 2007 Phys. Rev. Lett. 98 077203

    Google Scholar Pub Med

    Kang C, Wang T, Jiang C, Chen K and Chai G 2021 J. Alloys Compd. 865 158903

    Google Scholar Pub Med

    Wang W, Li P, Cao C, Liu F, Tang R, Chai G and Jiang C 2018 Appl. Phys. Lett. 113 042401

    Google Scholar Pub Med

    Kalarickal S S, Krivosik P, Wu M, Patton C E, Schneider M L, Kabos P, Silva T J and Nibarger J P 2006 J. Appl. Phys. 99 093909

    Google Scholar Pub Med

    Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Götz G, Reiss G, Kuschel T and Kläui M 2015 Phys. Rev. Appl. 4 014008

    Google Scholar Pub Med

    Vasili H B, Casals B, Cichelero R, Macià F, Geshev J, Gargiani P, Valvidares M, Herrero-Martin J, Pellegrin E, Fontcuberta J and Herranz G 2017 Phys. Rev. B 96 014433

    Google Scholar Pub Med

    Grachev A A, Sheshukova S E, Kostylev M P, Nikitov S A and Sadovnikov A V 2023 Phys. Rev. Appl. 19 054089

    Google Scholar Pub Med

    Zhao Z, Zhang L, Chen Y, Zhong Z, Tang X, Zhang Y, Zhang H and Jin L 2024 Appl. Phys. Lett. 124 052405

    Google Scholar Pub Med

    Han J, Zhang P, Hou J T, Siddiqui S A and Liu L 2019 Science 366 1121

    Google Scholar Pub Med

    Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431

    Google Scholar Pub Med

    Hurben M J and Patton C E 1998 J. Appl. Phys. 83 4344

    Google Scholar Pub Med

    Zenkov A V, Moskvin A S 2002 J. Phys.: Condens. Matter 14 6957

    Google Scholar Pub Med

    Parchenko S, Stupakiewicz A, Yoshimine I, Satoh T and Maziewski A 2013 Appl. Phys. Lett. 103 172402

    Google Scholar Pub Med

    Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839

    Google Scholar Pub Med

    Xu K, Zhang L, Godfrey A, Song D, Si W, Zhao Y, Liu Y, Rao Y, Zhang H and Zhou H A 2021 Proc. Natl. Acad. Sci. USA 118 e2101106118

    Google Scholar Pub Med

    Liang X, Xie J, Deng L and Bi L 2015 Appl. Phys. Lett. 106 052401

    Google Scholar Pub Med

    Crossley W A, Cooper R W, Page J L and Van Stapele R P 1970 Phys. Rev. B 1 4503

    Google Scholar Pub Med

    Takeuchi H, Shinagawa K and Taniguchi S 1973 Jpn. J. Appl. Phys. 12 465

    Google Scholar Pub Med

    Alam M N E, Vasiliev M and Alameh K 2014 Opt. Mater. Express 4 1866

    Google Scholar Pub Med

    Nur-E-Alam M, Vasiliev M and Alameh K 2017 Opt. Mater. Express 7 676

    Google Scholar Pub Med

    Kuila M, Deshpande U, Choudhary R J, Rajput P, Phase D M and Raghavendra Reddy V 2021 J. Appl. Phys. 129 093903

    Google Scholar Pub Med

    Dionne G F and Allen G A 1993 J. Appl. Phys. 73 6127

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(121) PDF downloads(4) Cited by(0)

Access History

Low Gilbert damping in Bi/In-doped YIG thin films with giant Faraday effect

Fund Project: 

Abstract: Magnetic films with low Gilbert damping are crucial for magnonic devices, which provide a promising platform for realizing ultralow-energy devices. In this study, low Gilbert damping and coercive field were observed in Bi/In-doped yttrium iron garnet (BiIn:YIG) thin films. The BiIn:YIG (444) films were deposited onto different substrates using pulsed laser deposition. Low coercivity ($<$1 Oe) with saturation magnetization of 125.09 emu/cc was achieved along the in-plane direction of BiIn:YIG film. The values of Gilbert damping and inhomogeneous broadening of ferromagnetic resonance in BiIn:YIG films were obtained to be as low as $4.05\times 10^{-4}$ and 5.62 Oe, respectively. In addition to low damping, the giant Faraday rotation angles (up to $2.9\times 10^{4}$ deg/cm) were also observed in the BiIn:YIG film. By modifying the magnetic structure and coupling effect between Bi$^{3+}$ and Fe$^{3+}$ of Bi:YIG, doped In$^{3+}$ plays a key role on variation of the magnetic properties. The low damping and giant Faraday effect made the BiIn:YIG film an appealing candidate for magnonic and magneto-optical devices.

Reference (63)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return