2024 Volume 33 Issue 10
Article Contents

Yuhang Li(李宇航), Pei Zhou(周佩), Chi Ding(丁驰), Qing Lu(鲁清), Xiaomeng Wang(王晓梦), and Jian Sun(孙建). 2024: Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3, Chinese Physics B, 33(10): 106102. doi: 10.1088/1674-1056/ad6f92
Citation: Yuhang Li(李宇航), Pei Zhou(周佩), Chi Ding(丁驰), Qing Lu(鲁清), Xiaomeng Wang(王晓梦), and Jian Sun(孙建). 2024: Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3, Chinese Physics B, 33(10): 106102. doi: 10.1088/1674-1056/ad6f92

Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3

  • Received Date: 26/06/2024
    Accepted Date: 14/08/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12304022 and 52361035) and the Fundamental Research Funds for the Central Universities.

  • TaSe$_{3}$ has garnered significant research interests due to its unique quasi-one-dimensional crystal structure, which gives rise to distinctive properties. Using crystal structure search and first-principles calculations, we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe$_{3}$ up to 100 GPa. In addition to the ambient pressure phase ($P2_{1}/m$-I), we identified three high-pressure phases: $P2_{1}/m$-II, Pnma, and Pmma. For the $P2_{1}/m$-I phase, the inclusion of spin-orbit coupling (SOC) results in significant SOC splitting and changes in the band inversion characteristics. Furthermore, band structure calculations for the three high-pressure phases indicate metallic natures, and the electron localization function suggests ionic bonding between Ta and Se atoms. Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa. This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe$_{3}$.
  • 加载中
  • Balandin A A, Kargar F, Salguero T T and Lake R K 2022 Mater. Today 55 74

    Google Scholar Pub Med

    Balandin AA L R and Salguero T T 2022 Appl. Phys. Lett. 121 040401

    Google Scholar Pub Med

    Brattas L K A, Krogh-Moe J, Songstad J and Pilotti A 1972 Acta Chem. Scand. 26 3441

    Google Scholar Pub Med

    Dai J, Li M and Zeng X C 2016 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 6 211

    Google Scholar Pub Med

    Zhao Q, Guo Y, Zhou Y, Yao Z, Ren Z, Bai J and Xu X 2018 Nanoscale 10 3547

    Google Scholar Pub Med

    Tsuchiya S, Matsubayashi K, Yamaya K, Takayanagi S, Tanda S and Uwatoko Y 2017 New J. Phys. 19 063004

    Google Scholar Pub Med

    Dai J and Zeng X C 2015 Angew. Chem.-Int. Edit. 54 7572

    Google Scholar Pub Med

    Kang J, Sahin H, Ozaydin H D, Senger R T and Peeters F M 2015 Phys. Rev. B 92 075413

    Google Scholar Pub Med

    Huang C, Zhang E Z, Yuan X, Wang W Y, Liu Y W, Zhang C, Ling J W, Liu S S and Xiu F X 2017 Chin. Phys. B 26 067302

    Google Scholar Pub Med

    Yue L, Xue S J, Li J R, Hu W, Barbour A, Zheng F P, Wang L C, Feng J, Wilkins S B, Mazzoli C, Comin R and Li Y 2020 Nat. Commun. 11 98

    Google Scholar Pub Med

    Zhu X D, Ning W, Li L J, Ling L S, Zhang R R, Zhang J L, Wang K F, Liu Y, Pi L, Ma Y C, Du H F, Tian M L, Sun Y P, Petrovic C and Zhang Y H 2016 Sci. Rep. 6 26974

    Google Scholar Pub Med

    Hu Y W, Zheng F P, Ren X, Feng J and Li Y 2015 Phys. Rev. B 91 144502

    Google Scholar Pub Med

    Nagata S, Kutsuzawa H, Ebisu S, Yamamura H and Taniguchi S 1989 J. Phys. Chem. Solids 50 703

    Google Scholar Pub Med

    Sambongi T M Y, Tsutsumi K, Shiozaki Y K and Yamaya Y A 1977 J. Phys. Soc. Jpn. 42 1421

    Google Scholar Pub Med

    Yamamoto M 1978 J. Phys. Soc. Jpn. 45 431

    Google Scholar Pub Med

    Island J O, Biele R, Barawi M, Clamagirand J M, Ares J R, Sanchez C, van der Zant H S J, Ferrer I J, D’Agosta R and Castellanos-Gomez A 2016 Sci. Rep. 6 22214

    Google Scholar Pub Med

    Liu H L, Yu X X, Wu K D, Gao Y, Tongay S, Javey A, Chen L D, Hong J W and Wu J Q 2020 Nano Lett. 20 5221

    Google Scholar Pub Med

    Papadopoulos N, Frisenda R, Biele R, Flores E, Ares J R, Sanchez C, van der Zant H S J, Ferrer I J, D’Agosta R and Castellanos-Gomez A 2018 Nanoscale 10 12424

    Google Scholar Pub Med

    Kezerashvili R Y and Spiridonova A 2022 Phys. Rev. Research 4 033016

    Google Scholar Pub Med

    Yu X, Wen X, Zhang W, Yang L, Wu H, Lou X, Xie Z, Liu Y and Chang H 2019 Crystengcomm 21 5586

    Google Scholar Pub Med

    Xing J, Blawat J, Speer S, Saleheen A I U, Singleton J and Jin R Y 2022 Adv. Quantum Technol. 5 2200094

    Google Scholar Pub Med

    Liu C, Wu C, Tan X Y, Tao Y, Zhang Y, Li D, Yang J, Yan Q and Chen Y 2023 Nat. Commun. 14 5597

    Google Scholar Pub Med

    Hyun J, Jeong M Y, Jung M C, et al. 2022 Phys. Rev. B 105 115143

    Google Scholar Pub Med

    Kargar F, Krayev A, Wurch M, Ghafouri Y, Debnath T, Wickramaratne D, Salguero T T, Lake R K, Bartels L and Balandin A A 2022 Nanoscale 14 6133

    Google Scholar Pub Med

    King P D C 2021 Nat. Mater. 20 1046

    Google Scholar Pub Med

    Liang Y, Wang J Y and Peng H L 2021 Matter 4 19

    Google Scholar Pub Med

    Ma J Z, Nie S M, Gui X, et al. 2022 Nat. Mater. 21 423

    Google Scholar Pub Med

    Yang X C, Luo X, Gao J J, Jiang Z Z, Wang W, Wang T Y, Si J G, Xi C Y, Song W H and Sun Y P 2021 Phys. Rev. B 104 155106

    Google Scholar Pub Med

    Lin C, Ochi M, Noguchi R, et al. 2021 Nat. Mater. 20 1168

    Google Scholar Pub Med

    Yue B, Zhong W, Deng W, Wen T, Wang Y, Yin Y, Shan P, Wang J T, Yu X and Hong F 2023 J. Am. Chem. Soc. 145 1301

    Google Scholar Pub Med

    Zhong X, Zhang M, Yang L, Qu X, Yang L, Yang J and Liu H 2019 Comput. Mater. Sci. 158 192

    Google Scholar Pub Med

    Li W, Li X, Zhang X, Yu H, Han F, Bergara A, Lin J, Wu J and Yang G 2023 Physical Chemistry Chemical Physics 25 23502

    Google Scholar Pub Med

    Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817

    Google Scholar Pub Med

    Liu C, Shi J, Gao H, Wang J, Han Y, Lu X, Wang H T, Xing D and Sun J 2021 Phys. Rev. Lett. 126 035701

    Google Scholar Pub Med

    Blöchl P E 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Grimme S 2006 J. Comput. Chem. 27 1787

    Google Scholar Pub Med

    Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306

    Google Scholar Pub Med

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.-Condes. Matter 21 395502

    Google Scholar Pub Med

    Nomura A, Yamaya K, Takayanagi S, Ichimura K, Matsuura T and Tanda S 2017 Europhys. Lett. 119 17005

    Google Scholar Pub Med

    Nie S, Xing L, Jin R, Xie W, Wang Z and Prinz F B 2018 Phys. Rev. B 98 125143

    Google Scholar Pub Med

    Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(89) PDF downloads(0) Cited by(0)

Access History

Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3

Fund Project: 

Abstract: TaSe$_{3}$ has garnered significant research interests due to its unique quasi-one-dimensional crystal structure, which gives rise to distinctive properties. Using crystal structure search and first-principles calculations, we systematically investigated the pressure-induced structural and electronic phase transitions of quasi-one-dimensional TaSe$_{3}$ up to 100 GPa. In addition to the ambient pressure phase ($P2_{1}/m$-I), we identified three high-pressure phases: $P2_{1}/m$-II, Pnma, and Pmma. For the $P2_{1}/m$-I phase, the inclusion of spin-orbit coupling (SOC) results in significant SOC splitting and changes in the band inversion characteristics. Furthermore, band structure calculations for the three high-pressure phases indicate metallic natures, and the electron localization function suggests ionic bonding between Ta and Se atoms. Our electron-phonon coupling calculations reveal a superconducting critical temperature of approximately 6.4 K for the Pmma phase at 100 GPa. This study provides valuable insights into the high-pressure electronic behavior of quasi-one-dimensional TaSe$_{3}$.

Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return