2024 Volume 33 Issue 10
Article Contents

Xiaoyu Wang(王啸宇), Muhammad Faizan, Kun Zhou(周琨), Xinjiang Wang(王新江), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). 2024: Role of self-assembled molecules' anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells, Chinese Physics B, 33(10): 107303. doi: 10.1088/1674-1056/ad711f
Citation: Xiaoyu Wang(王啸宇), Muhammad Faizan, Kun Zhou(周琨), Xinjiang Wang(王新江), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). 2024: Role of self-assembled molecules' anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells, Chinese Physics B, 33(10): 107303. doi: 10.1088/1674-1056/ad711f

Role of self-assembled molecules' anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells

  • Received Date: 28/07/2024
    Accepted Date: 19/08/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62321166653, 22090044, and 12350410372).

  • Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication, low hysteresis effects, and high stability. Despite these advantages, their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface, particularly at the buried interface between the perovskite and transparent conductive oxide (TCO). Recent efforts in the perovskite community have focused on designing novel self-assembled molecules (SAMs) to improve the quality of the buried interface. However, a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces. This understanding is crucial, particularly in terms of identifying chemically active anchoring groups. In this study, we used the star SAM ([2-(9H-carbazol-9-yl)ethyl] phosphonic acid) as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface. Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages. These groups fulfill three key criteria: they provide the greatest potential for defect passivation, exhibit stable adsorption with defects, and exert significant regulatory effects on interface dipoles. Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties, which effectively neutralize local charges near defects. Among various defect types, iodine vacancies are the easiest to passivate, whereas iodine-substituted lead defects are the most challenging to passivate. Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs, contributing to the ongoing development of more efficient inverted perovskite solar cells.
  • 加载中
  • Yao Y, Cheng C, Zhang C, Hu H, Wang K and De Wolf S 2022 Advanced Materials 34 2203794

    Google Scholar Pub Med

    Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q, Bati A S R, Wan H, Wang Z, Zeng L, Wang J, Serles P, Liu Y, Teale S, Liu Y, Saidaminov M I, Li M, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z and Sargent E H 2024 Science 384 189

    Google Scholar Pub Med

    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J and Zhu R 2018 Science 360 1442

    Google Scholar Pub Med

    Meng L, You J, Guo T F and Yang Y 2016 Acc. Chem. Res. 49 155

    Google Scholar Pub Med

    Li M, Liu M, Qi F, Lin F R and Jen A K Y 2024 Chem. Rev. 124 2138

    Google Scholar Pub Med

    Zhang S, Ye F, Wang X, Chen R, Zhang H, Zhan L, Jiang X, Li Y, Ji X, Liu S, Yu M, Yu F, Zhang Y, Wu R, Liu Z, Ning Z, Neher D, Han L, Lin Y, Tian H, Chen W, Stolterfoht M, Zhang L, Zhu W H and Wu Y 2023 Science 380 404

    Google Scholar Pub Med

    Wang G, Chen K, Cheng L, Wang D, Meng F and Xiang W 2024 Solar RRL 8 2300996

    Google Scholar Pub Med

    Rombach F M, Haque S A and Macdonald T J 2021 Energy Environ. Sci. 14 5161

    Google Scholar Pub Med

    Park H, Chaurasiya R, Jeong B H, Sakthivel P and Park H J 2021 Advanced Photonics Research 2 2000178

    Google Scholar Pub Med

    Magomedov A, Al-Ashouri A, Kasparavičius E, Strazdaite S, Niaura G, Jošt M, Malinauskas T, Albrecht S and Getautis V 2018 Adv. Energy Mater. 8 1801892

    Google Scholar Pub Med

    Al-Ashouri A, Magomedov A, Roß M, Jošt M, Talaikis M, Chistiakova G, Bertram T, Márquez J A, Köhnen E, Kasparavicius E, Levcenco S, Gil-Escrig L, Hages C J, Schlatmann R, Rech B, Malinauskas T, Unold T, Kaufmann C A, Korte L, Niaura G, Getautis V and Albrecht S 2019 Energy Environ. Sci. 12 3356

    Google Scholar Pub Med

    Yalcin E, Can M, Rodriguez-Seco C, Aktas E, Pudi R, Cambarau W, Demic S and Palomares E 2019 Energy Environ. Sci. 12 230

    Google Scholar Pub Med

    Wang S, Guo H and Wu Y 2023 Mater. Futures 2 012105

    Google Scholar Pub Med

    Reig M, Bagdziunas G, Volyniuk D, Grazulevicius J V and Velasco D 2017 Phys. Chem. Chem. Phys. 19 6721

    Google Scholar Pub Med

    Yi Z, Li X, Xiong Y, Shen G, Zhang W, Huang Y, Jiang Q, Ng X R, Luo Y, Zheng J, Leong W L, Fu F, Bu T and Yang J 2024 Interdisciplinary Materials 3 203

    Google Scholar Pub Med

    Park S M, Wei M, Xu J, Atapattu H R, Eickemeyer F T, Darabi K, Grater L, Yang Y, Liu C, Teale S, Chen B, Chen H, Wang T, Zeng L, Maxwell A, Wang Z, Rao K R, Cai Z, Zakeeruddin S M, Pham J T, Risko C M, Amassian A, Kanatzidis M G, Graham K R, Grätzel M and Sargent E H 2023 Science 381 209

    Google Scholar Pub Med

    Li G, Su Z, Canil L, Hughes D, Aldamasy M H, Dagar J, Trofimov S, Wang L, Zuo W, Jerónimo-Rendon J J, Byranvand M M, Wang C, Zhu R, Zhang Z, Yang F, Nasti G, Naydenov B, Tsoi W C, Li Z, Gao X, Wang Z, Jia Y, Unger E, Saliba M, Li M and Abate A 2023 Science 379 399

    Google Scholar Pub Med

    Li L, Wang Y, Wang X, Lin R, Luo X, Liu Z, Zhou K, Xiong S, Bao Q, Chen G, Tian Y, Deng Y, Xiao K, Wu J, Saidaminov M I, Lin H, Ma C Q, Zhao Z, Wu Y, Zhang L and Tan H 2022 Nat. Energy 7 708

    Google Scholar Pub Med

    Park S M, Wei M, Lempesis N, Yu W, Hossain T, Agosta L, Carnevali V, Atapattu H R, Serles P, Eickemeyer F T, Shin H, Vafaie M, Choi D, Darabi K, Jung E D, Yang Y, Kim D B, Zakeeruddin S M, Chen B, Amassian A, Filleter T, Kanatzidis M G, Graham K R, Xiao L, Rothlisberger U, Grätzel M and Sargent E H 2023 Nature 624 289

    Google Scholar Pub Med

    Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther J M, Li Z and Zhu Z 2023 Science 382 284

    Google Scholar Pub Med

    Aydin E, Ugur E, Yildirim B K, Allen T G, Dally P, Razzaq A, Cao F, Xu L, Vishal B, Yazmaciyan A, Said A A, Zhumagali S, Azmi R, Babics M, Fell A, Xiao C and De Wolf S 2023 Nature 623 732

    Google Scholar Pub Med

    Wang G, Zheng J, Duan W, Yang J, Mahmud M A, Lian Q, Tang S, Liao C, Bing J, Yi J, Leung T L, Cui X, Chen H, Jiang F, Huang Y, Lambertz A, Jankovec M, Topič M, Bremner S, Zhang Y Z, Cheng C, Ding K and Ho-Baillie A 2023 Joule 7 2583

    Google Scholar Pub Med

    Li M, Gao H, Yu L, Tang S, Peng Y, Zheng C, Xu L, Tao Y, Chen R and Huang W 2021 Small 17 2102090

    Google Scholar Pub Med

    Abbas M, Cai B, Hu J, Guo F, Mai Y and Yuan X C 2021 ACS Appl. Mater. Interfaces 13 46566

    Google Scholar Pub Med

    Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Computational Materials Science 6 15

    Google Scholar Pub Med

    Blöchl P E 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Zhao X G, Zhou K, Xing B, Zhao R, Luo S, Li T, Sun Y, Na G, Xie J, Yang X, Wang X, Wang X, He X, Lv J, Fu Y and Zhang L 2021 Science Bulletin 66 1973

    Google Scholar Pub Med

    Luo S, Xing B, Faizan M, Xie J, Zhou K, Zhao R, Li T, Wang X, Fu Y, He X, Lv J and Zhang L 2022 J. Phys. Chem. A 126 4300

    Google Scholar Pub Med

    Kırbıyık C, Akın Kara D, Kara K, Büyükçelebi S, Yiǧit M Z, Can M and Kuş M 2019 Applied Surface Science 479 177

    Google Scholar Pub Med

    Wirth M J, Fairbank R W P and Fatunmbi H O 1997 Science 275 44

    Google Scholar Pub Med

    Singh S, Abdur R, Nam H S, Kim J H, Lee S M, Lee H and Lee J 2023 Electron. Mater. Lett. 19 267

    Google Scholar Pub Med

    Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J and Gedanken A 1999 Langmuir 15 7111

    Google Scholar Pub Med

    Laibinis P E, Hickman J J, Wrighton M S and Whitesides G M 1989 Science 245 845

    Google Scholar Pub Med

    Chen Y, Li B, Zhong W, Luo D, Li G, Zhou C, Lan L and Chen R 2022 IEEE Transactions on Electron Devices 69 160

    Google Scholar Pub Med

    Vericat C, Vela M E, Benitez G, Carro P and Salvarezza R C 2010 Chem. Soc. Rev. 39 1805

    Google Scholar Pub Med

    Liu N and Yam C 2018 Physical Chemistry Chemical Physics 20 6800

    Google Scholar Pub Med

    Oner S M, Sezen E, Yordanli M S, Karakoc E, Deger C and Yavuz I 2022 J. Phys. Chem. Lett. 13 324

    Google Scholar Pub Med

    Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903

    Google Scholar Pub Med

    Alkauskas A, Broqvist P and Pasquarello A 2011 Physica Status Solidi (b) 248 775

    Google Scholar Pub Med

    Ismer L, Janotti A and Van de Walle C G 2011 J. Alloy. Compd. 509 S658

    Google Scholar Pub Med

    Chen W and Pasquarello A 2015 J. Phys.: Condens. Matter 27 133202

    Google Scholar Pub Med

    Godding J S W, Ramadan A J, Lin Y H, Schutt K, Snaith H J and Wenger B 2019 Joule 3 2716

    Google Scholar Pub Med

    Fei C, Li N, Wang M, Wang X, Gu H, Chen B, Zhang Z, Ni Z, Jiao H, Xu W, Shi Z, Yan Y and Huang J 2023 Science 380 823

    Google Scholar Pub Med

    Furer S O, Rietwyk K J, Pulvirenti F, McMeekin D P, Surmiak M A, Raga S R, Mao W, Lin X, Hora Y, Wang J, Shi Y, Barlow S, Ginger D S, Marder S R and Bach U 2023 ACS Appl. Energy Mater. 6 667

    Google Scholar Pub Med

    Guo H, Liu C, Hu H, Zhang S, Ji X, Cao X M, Ning Z, Zhu W H, Tian H and Wu Y 2023 National Science Review 10 nwad057

    Google Scholar Pub Med

    Shi Y, Zhang H, Tong X, Hou X, Li F, Du Y, Wang S, Zhang Q, Liu P and Zhao X 2021 Solar RRL 5 2100128

    Google Scholar Pub Med

    Dai Z, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y and Padture N P 2021 Science 372 618

    Google Scholar Pub Med

    Lu H, Zhuang J, Ma Z, Deng Y, Wang Q, Guo Z, Zhao S and Li H 2019 Materials Science in Semiconductor Processing 97 21

    Google Scholar Pub Med

    Kırbıyık C, Can M and Kuş M 2020 Materials Science in Semiconductor Processing 107 104860

    Google Scholar Pub Med

    Xu J, Chen H, Grater L, Liu C, Yang Y, Teale S, Maxwell A, Mahesh S, Wan H, Chang Y, Chen B, Rehl B, Park S M, Kanatzidis M G and Sargent E H 2023 Nat. Mater. 22 1507

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(55) PDF downloads(0) Cited by(0)

Access History

Role of self-assembled molecules' anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells

Fund Project: 

Abstract: Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication, low hysteresis effects, and high stability. Despite these advantages, their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface, particularly at the buried interface between the perovskite and transparent conductive oxide (TCO). Recent efforts in the perovskite community have focused on designing novel self-assembled molecules (SAMs) to improve the quality of the buried interface. However, a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces. This understanding is crucial, particularly in terms of identifying chemically active anchoring groups. In this study, we used the star SAM ([2-(9H-carbazol-9-yl)ethyl] phosphonic acid) as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface. Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages. These groups fulfill three key criteria: they provide the greatest potential for defect passivation, exhibit stable adsorption with defects, and exert significant regulatory effects on interface dipoles. Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties, which effectively neutralize local charges near defects. Among various defect types, iodine vacancies are the easiest to passivate, whereas iodine-substituted lead defects are the most challenging to passivate. Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs, contributing to the ongoing development of more efficient inverted perovskite solar cells.

Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return