2024 Volume 33 Issue 11
Article Contents

Man Li, Qi Wang, Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿). 2024: Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy, Chinese Physics B, 33(11): 117101. doi: 10.1088/1674-1056/ad7afe
Citation: Man Li, Qi Wang, Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿). 2024: Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy, Chinese Physics B, 33(11): 117101. doi: 10.1088/1674-1056/ad7afe

Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy

  • Received Date: 22/07/2024
    Accepted Date: 02/09/2024
    Available Online: 15/11/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 12204536), the Fundamental Research Funds for the Central Universities, and the Research Funds of People’s Public Security University of China (PPSUC) (Grant No. 2023JKF02ZK09).

  • PACS: 71.20.-b; 79.60.-i

  • Searching for the dispersionless flat band (FB) in quantum materials, especially in topological systems, becomes an interesting topic. The kagome lattice is an ideal platform for such exploration because the FB can be naturally induced by the underlying destructive interference. Nevertheless, the magnetic kagome system that hosts the FB close to the Fermi level ($E_{\rm F}$) is exceptionally rare. Here, we study the electronic structure of a kagome magnet LuMn$_6$Sn$_6$ by combining angle-resolved photoemission spectroscopy and density functional theory calculations. The observed Fermi-surface topology and overall band dispersions are similar to previous studies of the $X$Mn$_6$Sn$_6$ ($X = {\rm Dy}$, Tb, Gd, Y) family of compounds. We clearly observe two kagome-derived FBs extending through the entire Brillouin zone, and one of them is located just below $E_{\rm F}$. The photon-energy-dependent measurements reveal that these FBs are nearly dispersionless along the $k_z$ direction as well, supporting the quasi-two-dimensional character of such FBs. Our results complement the $X$Mn$_6$Sn$_6$ family and demonstrate the robustness of the FB features across this family.

  • 加载中
  • Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M 2021 Nat. Phys. 17 374

    Google Scholar Pub Med

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43

    Google Scholar Pub Med

    Lisi S, Lu X, Benschop T, et al. 2021 Nat. Phys. 17 189

    Google Scholar Pub Med

    Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Park H and Ju L 2024 Nat. Nanotechnol. 19 181

    Google Scholar Pub Med

    Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137

    Google Scholar Pub Med

    Teng X, Chen L, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P 2022 Nature 609 490

    Google Scholar Pub Med

    Lou R, Fedorov A, Yin Q, Kuibarov A, Tu Z, Gong C, Schwier E F, Büchner B, Lei H and Borisenko S 2022 Phys. Rev. Lett. 128 036402

    Google Scholar Pub Med

    Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502

    Google Scholar Pub Med

    Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405

    Google Scholar Pub Med

    Zhong Y, Liu J, Wu X, et al. 2023 Nature 617 488

    Google Scholar Pub Med

    Xu G, Lian B and Zhang S C 2015 Phys. Rev. Lett. 115 186802

    Google Scholar Pub Med

    Yin J X, Ma W, Cochran T A, et al. 2020 Nature 583 533

    Google Scholar Pub Med

    Zhang T, Yilmaz T, Vescovo E, Li H X, Moore R G, Lee H N, Miao H, Murakami S and McGuire M A 2022 npj Comput. Mater. 8 155

    Google Scholar Pub Med

    Wang Y, Wu H, McCandless G T, Chan J Y and Ali M N 2023 Nat. Rev. Phys. 5 635

    Google Scholar Pub Med

    Peng S, Han Y, Pokharel G, Shen J, Li Z, Hashimoto M, Lu D, Ortiz B R, Luo Y, Li H, Guo M, Wang B, Cui S, Sun Z, Qiao Z, Wilson S D and He J 2021 Phys. Rev. Lett. 127 266401

    Google Scholar Pub Med

    Yin J X, Lian B and Hasan M Z 2022 Nature 612 647

    Google Scholar Pub Med

    Liu Z, Liu F and Wu Y S 2014 Chin. Phys. B 23 077308

    Google Scholar Pub Med

    Ohgushi K, Murakami S and Nagaosa N 2000 Phys. Rev. B 62 R6065

    Google Scholar Pub Med

    Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803

    Google Scholar Pub Med

    Venderbos J W F, Daghofer M and van den Brink J 2011 Phys. Rev. Lett. 107 116401

    Google Scholar Pub Med

    Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804

    Google Scholar Pub Med

    Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802

    Google Scholar Pub Med

    Liu Z, Wang Z F, Mei J W, Wu Y S and Liu F 2013 Phys. Rev. Lett. 110 106804

    Google Scholar Pub Med

    Mielke A 1991 J. Phys. A: Math. General 24 3311

    Google Scholar Pub Med

    Mielke A 1992 J. Phys. A: Math. General 25 4335

    Google Scholar Pub Med

    Imada M and Kohno M 2000 Phys. Rev. Lett. 84 143

    Google Scholar Pub Med

    Peotta S and Törmä P 2015 Nat. Commun. 6 8944

    Google Scholar Pub Med

    Huber S D and Altman E 2010 Phys. Rev. B 82 184502

    Google Scholar Pub Med

    Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401

    Google Scholar Pub Med

    Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353

    Google Scholar Pub Med

    Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003

    Google Scholar Pub Med

    Mielke C, Das D, Yin J X, et al. 2022 Nature 602 245

    Google Scholar Pub Med

    Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216

    Google Scholar Pub Med

    Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222

    Google Scholar Pub Med

    Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001

    Google Scholar Pub Med

    Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645

    Google Scholar Pub Med

    Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59

    Google Scholar Pub Med

    Arachchige H W S, Meier W R, Marshall M, Matsuoka T, Xue R, McGuire M A, Hermann R P, Cao H and Mandrus D 2022 Phys. Rev. Lett. 129 216402

    Google Scholar Pub Med

    Hu T, Pi H, Xu S, Yue L, Wu Q, Liu Q, Zhang S, Li R, Zhou X, Yuan J, Wu D, Dong T, Weng H and Wang N 2023 Phys. Rev. B 107 165119

    Google Scholar Pub Med

    Hu Y, Ma J, Li Y, Gawryluk D J, Hu T, Teyssier J, Multian V, Yin Z, Jiang Y, Xu S, Shin S, Plokhikh I, Han X, Plumb N C, Liu Y, Yin J, Guguchia Z, Zhao Y, Schnyder A P, Wu X, Pomjakushina E, Hasan M Z, Wang N and Shi M 2023 2024 Nat. Commun. 15 1658

    Google Scholar Pub Med

    Korshunov A, Hu H, Subires D, Jiang Y, Cǎlugǎru D, Feng X, Rajapitamahuni A, Yi C, Roychowdhury S, Vergniory M G, Strempfer J, Shekhar C, Vescovo E, Chernyshov D, Said A H, Bosak A, Felser C, Bernevig B A and Blanco-Canosa S 2023 Nat. Commun. 14 6646

    Google Scholar Pub Med

    Pokharel G, Ortiz B, Chamorro J, Sarte P, Kautzsch L, Wu G, Ruff J and Wilson S D 2022 Phys. Rev. Mater. 6 104202

    Google Scholar Pub Med

    Haldane F D M 2004 Phys. Rev. Lett. 93 206602

    Google Scholar Pub Med

    Ma W, Xu X, Wang Z, Zhou H, Marshall M, Qu Z, Xie W and Jia S 2021 Phys. Rev. B 103 235109

    Google Scholar Pub Med

    Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602

    Google Scholar Pub Med

    Dhakal G, Cheenicode Kabeer F, Pathak A K, Kabir F, Poudel N, Filippone R, Casey J, Pradhan Sakhya A, Regmi S, Sims C, Dimitri K, Manfrinetti P, Gofryk K, Oppeneer P M and Neupane M 2021 Phys. Rev. B 104 L161115

    Google Scholar Pub Med

    Chen D, Le C, Fu C, Lin H, Schnelle W, Sun Y and Felser C 2021 Phys. Rev. B 103 144410

    Google Scholar Pub Med

    Gu X, Chen C, Wei W S, et al. 2022 Phys. Rev. B 105 155108

    Google Scholar Pub Med

    Wang Q, Neubauer K J, Duan C, Yin Q, Fujitsu S, Hosono H, Ye F, Zhang R, Chi S, Krycka K, Lei H and Dai P 2021 Phys. Rev. B 103 014416

    Google Scholar Pub Med

    Liu Z, Zhao N, Li M, Yin Q, Wang Q, Liu Z, Shen D, Huang Y, Lei H, Liu K and Wang S 2021 Phys. Rev. B 104 115122

    Google Scholar Pub Med

    Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z and Wang S 2021 Nat. Commun. 12 3129

    Google Scholar Pub Med

    Venturini G, Fruchart D and Malaman B 1996 J. Alloys Compd. 236 102

    Google Scholar Pub Med

    Hüfner S 2003 Photoelectron Spectroscopy: Principles and Applications (Berlin: Springer)

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Kulik H J, Cococcioni M, Scherlis D A and Marzari N 2006 Phys. Rev. Lett. 97 103001

    Google Scholar Pub Med

    Shirley E L, Terminello L J, Santoni A and Himpsel F J 1995 Phys. Rev. B 51 13614

    Google Scholar Pub Med

    Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004

    Google Scholar Pub Med

    Liu Z, Li M, Wang Q, Wang G, Wen C, Jiang K, Lu X, Yan S, Huang Y, Shen D, Yin J X, Wang Z, Yin Z, Lei H and Wang S 2020 Nat. Commun. 11 4002

    Google Scholar Pub Med

    Li H, Zhao H, Jiang K, Wang Q, Yin Q, Zhao N N, Liu K, Wang Z, Lei H and Zeljkovic I 2022 Nat. Phys. 18 644

    Google Scholar Pub Med

    Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W and Mazin I I 2020 Sci. Adv. 6 eabe2680

    Google Scholar Pub Med

    Li L, Chi S, Ma W, Guo K, Xu G and Jia S 2024 Chin. Phys. B 33 057501

    Google Scholar Pub Med

    Yin J X, Zhang S S, Li H, et al. 2018 Nature 562 91

    Google Scholar Pub Med

    Lou R, Zhou L, Song W, Fedorov A, Tu Z, Jiang B, Wang Q, Li M, Liu Z, Chen X, Rader O, Büchner B, Sun Y, Weng H, Lei H and Wang S 2023 arXiv: 2309.06399 [cond-mat.str-el]

    Google Scholar Pub Med

    Yang T Y, Wan Q, Song J P, Du Z, Tang J, Wang Z W, Plumb N C, Radovic M, Wang G W, Wang G Y, Sun Z, Yin J X, Chen Z H, Huang Y B, Yu R, Shi M, Xiong Y M and Xu N 2022 Quantum Frontiers 1 14

    Google Scholar Pub Med

    Song B, Xie Y, Li W J, Liu H, Zhang Q, gang Guo J, Zhao L, Yu S L, Zhou X, Chen X and Ying T 2024 arXiv:2404.12374 [cond-mat.str-el]

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(212) PDF downloads(3) Cited by(0)

Access History

Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy

Fund Project: 

Abstract: 

Searching for the dispersionless flat band (FB) in quantum materials, especially in topological systems, becomes an interesting topic. The kagome lattice is an ideal platform for such exploration because the FB can be naturally induced by the underlying destructive interference. Nevertheless, the magnetic kagome system that hosts the FB close to the Fermi level ($E_{\rm F}$) is exceptionally rare. Here, we study the electronic structure of a kagome magnet LuMn$_6$Sn$_6$ by combining angle-resolved photoemission spectroscopy and density functional theory calculations. The observed Fermi-surface topology and overall band dispersions are similar to previous studies of the $X$Mn$_6$Sn$_6$ ($X = {\rm Dy}$, Tb, Gd, Y) family of compounds. We clearly observe two kagome-derived FBs extending through the entire Brillouin zone, and one of them is located just below $E_{\rm F}$. The photon-energy-dependent measurements reveal that these FBs are nearly dispersionless along the $k_z$ direction as well, supporting the quasi-two-dimensional character of such FBs. Our results complement the $X$Mn$_6$Sn$_6$ family and demonstrate the robustness of the FB features across this family.

Reference (67)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return