2024 Volume 33 Issue 11
Article Contents

Gaowei Zhang(张高维), Zhengming Sheng(盛政明), Suming Weng(翁苏明), Min Chen(陈民), and Jie Zhang(张杰). 2024: Proton acceleration in plasma turbulence driven by high-energy lepton jets, Chinese Physics B, 33(11): 115203. doi: 10.1088/1674-1056/ad7b01
Citation: Gaowei Zhang(张高维), Zhengming Sheng(盛政明), Suming Weng(翁苏明), Min Chen(陈民), and Jie Zhang(张杰). 2024: Proton acceleration in plasma turbulence driven by high-energy lepton jets, Chinese Physics B, 33(11): 115203. doi: 10.1088/1674-1056/ad7b01

Proton acceleration in plasma turbulence driven by high-energy lepton jets

  • Received Date: 15/08/2024
    Accepted Date: 09/09/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12135009, 11991074, 11975154, and 12005287).

  • PACS: 52.35.-g; 52.35.Ra; 52.35.Tc; 52.35.Qz

  • The interaction of high energy lepton jets composed of electrons and positrons with background electron-proton plasma is investigated numerically based upon particle-in-cell simulation, focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence. Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media. When such a jet is injected into the background plasma, the Weibel instability is excited quickly, which leads to the development of plasma turbulence into the nonlinear stage. The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration, where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles. Because of background plasma acceleration, a collisionless electrostatic shock wave is formed, where some pre-accelerated protons are further accelerated when passing through the shock wave front. Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated. For a given background plasma density, the maximum proton energy generally increases both with the density and kinetic energy of the injected jet. Moreover, for a homogeneous background plasma, the proton acceleration via both turbulent fields and collisionless shocks is found to be significant. In the case of an inhomogeneous plasma, the proton acceleration in the plasma turbulence is dominant. Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.
  • 加载中
  • Fermi E 1949 Phys. Rev. 75 1169

    Google Scholar Pub Med

    Spitkovsky A 2008 Astrophys. J. 682 L5

    Google Scholar Pub Med

    Ebisuzaki T and Tajima T 2014 Astropart. Phys. 56 9

    Google Scholar Pub Med

    Tajima T, Yan X and Ebisuzaki T 2020 Rev. Mod. Plasma Phys. 4 7

    Google Scholar Pub Med

    Bhattacharjee P and Sigl G 2000 Phys. Rep. 327 109

    Google Scholar Pub Med

    Olinto A 2000 Phys. Rep. 333-334 329

    Google Scholar Pub Med

    Hinton J 2009 New J. Phys. 11 055005

    Google Scholar Pub Med

    Sinnis G 2009 New J. Phys. 11 055007

    Google Scholar Pub Med

    Sommers P and Westerhoff S 2009 New J. Phys. 11 055004

    Google Scholar Pub Med

    Bell A 1978 Mon. Not. Royal Astronom. Soc. 182 147

    Google Scholar Pub Med

    Axford W, Leer E and Skadron G 1977 International Cosmic Ray Conference vol 11 (Springer)

    Google Scholar Pub Med

    Blandford R D and Ostriker J P 1978 Astrophys. J. 221 L29

    Google Scholar Pub Med

    Rieger F M, Bosch-Ramon V and Duffy P 2007 The Multi-Messenger Approach to High-Energy Gamma-Ray Sources (Springer) pp. 119-125

    Google Scholar Pub Med

    Gombosi T, Lorencz K and Jokipii J 1989 J. Geophys. Res. Space Phys. 94 15011

    Google Scholar Pub Med

    Foschini L 2011 arXiv:1105.0772

    Google Scholar Pub Med

    Lyutikov M, Pariev V I and Gabuzda D C 2005 Mon. Not. Royal Astronom. Soc. 360 869

    Google Scholar Pub Med

    Zhang J, Sun X N, Liang E W, Lu R J, Lu Y and Zhang S N 2014 Astrophys. J. 788 104

    Google Scholar Pub Med

    Pruet J, Abazajian K and Fuller G M 2001 Phys. Rev. D 64 063002

    Google Scholar Pub Med

    Zhang B and Meszaros P 2004 Internat. J. Mod. Phys. A 19 2385

    Google Scholar Pub Med

    Piran T 2004 Rev. Mod. Phys. 76 1143

    Google Scholar Pub Med

    Peterson B M 1997 An Introduction to Active Galactic Nuclei (Cambridge University Press)

    Google Scholar Pub Med

    Reig P 2011 Astrophys. Space Sci. 332 1

    Google Scholar Pub Med

    Gezari S 2021 Ann. Rev. Astron. Astrophys. 59 21

    Google Scholar Pub Med

    Dyson J E and Williams D A 2020 The Physics of the Interstellar Medium (CRC Press)

    Google Scholar Pub Med

    Weibel E S 1959 Phys. Rev. Lett. 2 83

    Google Scholar Pub Med

    Fried B D 1959 The Phys. Fluids 2 337

    Google Scholar Pub Med

    Thompson T A, Burrows A and Meyer B S 2001 Astrophys. J. 562 887

    Google Scholar Pub Med

    Piran T 1999 Phys. Rep. 314 575

    Google Scholar Pub Med

    Park H S, Huntington C, Fiuza F, Drake R, Froula D, Gregori G, Koenig M, Kugland N, Kuranz C, Lamb D, et al. 2015 Phys. Plasmas 22

    Google Scholar Pub Med

    Fiuza F, Swadling G, Grassi A, Rinderknecht H, Higginson D, Ryutov D, Bruulsema C, Drake R, Funk S, Glenzer S, et al. 2020 Nat. Phys. 16 916

    Google Scholar Pub Med

    Huang J, Weng S M, Wang X, Zhong J Y, Zhu X L, Li X F, Chen M, Murakami M and Sheng Z M 2022 Astrophys. J. 931 36

    Google Scholar Pub Med

    Cui Y, Sheng Z, Lu Q, Li Y and Zhang J 2015 Sci. China Phys. Mechan. Astron. 58 105201

    Google Scholar Pub Med

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, et al. 2002 Computational ScienceICCS 2002: International Conference Amsterdam, The Netherlands, April 21-24, 2002 Proceedings, Part III 2 (Springer) pp. 342-351

    Google Scholar Pub Med

    Liu H, Dong Q L, Yuan D W, Liu X, Hua N, Qiao Z F, Zhu B Q, Zhu J Q, Jiang B B, Du K, et al. 2016 Chin. Phys. B 25 125201

    Google Scholar Pub Med

    Bohdan A, Pohl M, Niemiec J, Morris P J, Matsumoto Y, Amano T, Hoshino M and Sulaiman A 2021 Phys. Rev. Lett. 126 095101

    Google Scholar Pub Med

    Bell A 2004 Mon. Not. Royal Astronom. Soc. 353 550

    Google Scholar Pub Med

    Peterson J R, Glenzer S and Fiuza F 2021 Phys. Rev. Lett. 126 215101

    Google Scholar Pub Med

    Peterson J R, Glenzer S and Fiuza F 2022 Astrophys. J. Lett. 924 L12

    Google Scholar Pub Med

    Liu P, Wu D, Hu T, Yuan D, Zhao G, Sheng Z, He X and Zhang J 2024 Phys. Rev. Lett. 132 155103

    Google Scholar Pub Med

    Biskamp D, Schwarz E and Drake J 1996 Phys. Rev. Lett. 76 1264

    Google Scholar Pub Med

    Mondal S, Narayanan V, Ding W J, Lad A D, Hao B, Ahmad S, Wang W M, Sheng Z M, Sengupta S, Kaw P, et al. 2012 Proc. Nat. Acad. Sci. USA 109 8011

    Google Scholar Pub Med

    Bret A, Firpo M C and Deutsch C 2005 Phys. Rev. E 72 016403

    Google Scholar Pub Med

    Silva L O, Fonseca R A, Tonge J W, Mori W B and Dawson J M 2002 Phys. Plasmas 9 2458

    Google Scholar Pub Med

    Hao B, Ding W J, Sheng Z M, Ren C and Zhang J 2009 Phys. Rev. E 80 066402

    Google Scholar Pub Med

    Cai H B, Zhu S P, Zheng C Y, He X T and Li J W 2006 Chin. Phys. Lett. 23 161

    Google Scholar Pub Med

    Forslund D and Freidberg J 1971 Phys. Rev. Lett. 27 1189

    Google Scholar Pub Med

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S and Mori W B 2004 Phys. Rev. Lett. 92 015002

    Google Scholar Pub Med

    Lemoine M, Gremillet L, Pelletier G and Vanthieghem A 2019 Phys. Rev. Lett. 123 035101

    Google Scholar Pub Med

    Yuan D W and Li Y T 2015 Chin. Phys. B 24 015204

    Google Scholar Pub Med

    Yuan D, Lei Z, Wei H, Zhang Z, Zhong J, Li Y, Ping Y, Zhang Y, Li Y, Wang F, et al. 2024 Nat. Commun. 15 5897

    Google Scholar Pub Med

    Zhang Q, Ping Y, An W, Sun W and Zhong J 2022 Chin. Phys. B 31 065203

    Google Scholar Pub Med

    Sarri G, Poder K, Cole J, Schumaker W, Di Piazza A, Reville B, Dzelzainis T, Doria D, Gizzi L, Grittani G, et al. 2015 Nat. Commun. 6 6747

    Google Scholar Pub Med

    Jiao J, Zhang B, Yu J, Zhang Z, Yan Y, He S, Deng Z, Teng J, Hong W and Gu Y 2017 Laser and Particle Beams 35 234

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(95) PDF downloads(0) Cited by(0)

Access History

Proton acceleration in plasma turbulence driven by high-energy lepton jets

Fund Project: 

Abstract: The interaction of high energy lepton jets composed of electrons and positrons with background electron-proton plasma is investigated numerically based upon particle-in-cell simulation, focusing on the acceleration processes of background protons due to the development of electromagnetic turbulence. Such interaction may be found in the universe when energetic lepton jets propagate in the interstellar media. When such a jet is injected into the background plasma, the Weibel instability is excited quickly, which leads to the development of plasma turbulence into the nonlinear stage. The turbulent electric and magnetic fields accelerate plasma particles via the Fermi II type acceleration, where the maximum energy of both electrons and protons can be accelerated to much higher than that of the incident jet particles. Because of background plasma acceleration, a collisionless electrostatic shock wave is formed, where some pre-accelerated protons are further accelerated when passing through the shock wave front. Dependence of proton acceleration on the beam-plasma density ratio and beam energy is investigated. For a given background plasma density, the maximum proton energy generally increases both with the density and kinetic energy of the injected jet. Moreover, for a homogeneous background plasma, the proton acceleration via both turbulent fields and collisionless shocks is found to be significant. In the case of an inhomogeneous plasma, the proton acceleration in the plasma turbulence is dominant. Our studies illustrate a scenario where protons from background plasma can be accelerated successively by the turbulent fields and collisionless shocks.

Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return