2024 Volume 33 Issue 12
Article Contents

Kang Jia(贾康), Xiao-Jing Dong(董晓晶), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). 2024: Janus monolayers Fe2SSeX2 (X =Ga, In, and Tl): Robust nontrivial topology with high Chern number, Chinese Physics B, 33(12): 127103. doi: 10.1088/1674-1056/ad7c2a
Citation: Kang Jia(贾康), Xiao-Jing Dong(董晓晶), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). 2024: Janus monolayers Fe2SSeX2 (X =Ga, In, and Tl): Robust nontrivial topology with high Chern number, Chinese Physics B, 33(12): 127103. doi: 10.1088/1674-1056/ad7c2a

Janus monolayers Fe2SSeX2 (X =Ga, In, and Tl): Robust nontrivial topology with high Chern number

  • Received Date: 29/05/2024
    Accepted Date: 15/09/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 52173283 and 62071200), Taishan Scholar Program of Shandong Province (Grant No. ts20190939), and Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043).

  • High-performance quantum anomalous Hall (QAH) systems are crucial materials for exploring emerging quantum physics and magnetic topological phenomena. Inspired by layered FeSe materials with excellent superconducting properties, the Janus monolayers Fe$_{2}$SSe$X_{2}$ ($X ={\rm Ga}$, In and Tl) are built by the decoration of Ga, In and Tl atoms in monolayer Fe$_{2}$SSe. In first-principles calculations, Fe$_{2}$SSe$X_{2}$ have stable structures and prefer ferromagnetic (FM) ordering, and can be considered as Weyl semimetals without spin-orbit coupling. For out-of-plane (OOP) magnetic anisotropy, large nontrivial gaps are opened and the Fe$_{2}$SSe$X_{2}$ are predicted to be large-gap QAH insulators with a high Chern number $C = 2$, proved by two chiral edge states and Berry curvature. When the magnetization is flipped, the two chiral edge states can be simultaneously changed and $C =-2$ can be obtained, revealing the fascinating behavior of chiral spin-edge state locking. It is found that the QAH properties of Fe$_{2}$SSe$X_{2}$ are robust against strain. In particular, nontrivial topological quantum states can spontaneously appear for Fe$_{2}$SSeGa$_{2}$ and Fe$_{2}$SSeIn$_{2}$ because the orientations of the easy magnetic axis are adjusted from in-plane to OOP by the biaxial strain. Our studies provide excellent candidate systems to realize QAH properties with a high Chern number, and suggest more experimental explorations combining superconductivity and topology.
  • 加载中
  • Haldane F D M 2017 Rev. Mod. Phys. 89 040502

    Google Scholar Pub Med

    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045

    Google Scholar Pub Med

    Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057

    Google Scholar Pub Med

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    Google Scholar Pub Med

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641

    Google Scholar Pub Med

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895

    Google Scholar Pub Med

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900

    Google Scholar Pub Med

    Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005

    Google Scholar Pub Med

    Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001

    Google Scholar Pub Med

    You J Y, Chen C, Zhang Z, Sheng X L, Yang S A and Su G 2019 Phys. Rev. B 100 064408

    Google Scholar Pub Med

    Li G G, Xie R R, Ding L J, Ji W X, Li S S, Zhang C W, Li P and Wang P J 2021 Phys. Chem. Chem. Phys. 23 12068

    Google Scholar Pub Med

    Jin L, Wang L, Zhang X, Liu Y, Dai X, Gao H and Liu G 2021 Nanoscale 13 5901

    Google Scholar Pub Med

    Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433

    Google Scholar Pub Med

    Li S S, JiWX, Hu S J, Zhang CWand Yan S S 2017 ACS Appl. Mater. Interfaces 9 41443

    Google Scholar Pub Med

    Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 Nanoscale 15 8395

    Google Scholar Pub Med

    Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419

    Google Scholar Pub Med

    Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830

    Google Scholar Pub Med

    Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 ACS Appl. Nano Mater. 6 14003

    Google Scholar Pub Med

    Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112

    Google Scholar Pub Med

    Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2024 Nanoscale 16 8639

    Google Scholar Pub Med

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503

    Google Scholar Pub Med

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009

    Google Scholar Pub Med

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater. 12 15

    Google Scholar Pub Med

    He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605

    Google Scholar Pub Med

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B and Feng D 2013 Nat. Mater. 12 634

    Google Scholar Pub Med

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285

    Google Scholar Pub Med

    He K, Wang Y and Xue Q K 2018 Annu. Rev. Condens. Matter Phys. 9 329

    Google Scholar Pub Med

    Ren Y, Qiao Z and Niu Q 2016 Rep. Prog. Phys. 79 066501

    Google Scholar Pub Med

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766

    Google Scholar Pub Med

    Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801

    Google Scholar Pub Med

    Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V and Chiang T C 2018 Nat. Commun. 9 2003

    Google Scholar Pub Med

    Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev. 7 1280

    Google Scholar Pub Med

    Miert G V, Smith C M and Juricic V 2014 Phys. Rev. B 90 081406

    Google Scholar Pub Med

    Cai T, Li X, Wang F, Ju S, Feng J and Gong C D 2015 Nano Lett. 15 6434

    Google Scholar Pub Med

    Song Y J, Ahn K H, Pickett W E and Lee K W 2016 Phys. Rev. B 94 125134

    Google Scholar Pub Med

    Kong X, Li L, Leenaerts O, Wang W, Liu X J and Peeters F M 2018 Nanoscale 10 8153

    Google Scholar Pub Med

    Blochl P E 1994 Phys. Rev. B 50 17953

    Google Scholar Pub Med

    Kresse G and Hafner J 1994 Phys. Rev. B 49 14251

    Google Scholar Pub Med

    Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505

    Google Scholar Pub Med

    Liu G, Chen T, Zhou G, Xu Z and Xiao X 2023 ACS Sens. 8 1440

    Google Scholar Pub Med

    Wu X, Vanderbilt D and Hamann D R 2005 Phys. Rev. B 72 035105

    Google Scholar Pub Med

    Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106

    Google Scholar Pub Med

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685

    Google Scholar Pub Med

    Wang X, Yates J R, Souza I and Vanderbilt D 2006 Phys. Rev. B 74 195118

    Google Scholar Pub Med

    Wu Q, Zhang S, Song H F, TroyerMand Soluyanov A A 2018 Comput. Phys. Commun. 224 405

    Google Scholar Pub Med

    Lu A Y, Zhu H, Xiao J, et al. 2017 Nat. Nanotechnol. 12 744

    Google Scholar Pub Med

    Li Y, Li J H, Li Y, Ye M, Zheng F W, Zhang Z T, Fu J H, Duan W H and Xu Y 2020 Phys. Rev. Lett. 125 086401

    Google Scholar Pub Med

    Yu M and Trinkle D R 2011 J. Chem. Phys. 134 064111

    Google Scholar Pub Med

    Cao C, Wu M, Jiang J and Cheng H P 2010 Phys. Rev. B 81 205424

    Google Scholar Pub Med

    Wehling T O, Lichtenstein A I and Katsnelson M I 2011 Phys. Rev. B 84 235110

    Google Scholar Pub Med

    Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133

    Google Scholar Pub Med

    Coey J M D 2010 Magnetism and Magnetic Materials (Cambridge: Cambridge University Press)

    Google Scholar Pub Med

    Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304

    Google Scholar Pub Med

    Cui Q R, Zhu Y M, Liang J H, Cui P and Yang H X 2021 Phys. Rev. B 103 085421

    Google Scholar Pub Med

    Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 J. Mater. Chem. C 11 10359

    Google Scholar Pub Med

    Fernández J F, Ferreira M F and Stankiewicz J 1986 Phys. Rev. B 34 292

    Google Scholar Pub Med

    Goodenough J B 1955 Phys. Rev. 100 564

    Google Scholar Pub Med

    Anderson P W 1959 Phys. Rev. 115 2

    Google Scholar Pub Med

    Kanamori J 1960 J. Appl. Phys. 31 S14

    Google Scholar Pub Med

    utic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323

    Google Scholar Pub Med

    Wang Y L and Ding Y 2013 Solid State Commun. 155 6

    Google Scholar Pub Med

    Jin Y, Yan M, Dedkov Y and Voloshina E 2022 J. Mater. Chem. C 10 3812

    Google Scholar Pub Med

    Thouless D J, Kohmoto M, NightingaleMP and den NijsM1982 Phys. Rev. Lett. 49 405

    Google Scholar Pub Med

    Nie S, Sun Y, Prinz F B, Wang Z, Weng H, Fang Z and Dai X 2020 Phys. Rev. Lett. 124 076403

    Google Scholar Pub Med

    Wu M 2017 2D Mater. 4 021014

    Google Scholar Pub Med

    Liu X, Hsu H C and Liu C X 2013 Phys. Rev. Lett. 111 086802

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(151) PDF downloads(0) Cited by(0)

Access History

Janus monolayers Fe2SSeX2 (X =Ga, In, and Tl): Robust nontrivial topology with high Chern number

Fund Project: 

Abstract: High-performance quantum anomalous Hall (QAH) systems are crucial materials for exploring emerging quantum physics and magnetic topological phenomena. Inspired by layered FeSe materials with excellent superconducting properties, the Janus monolayers Fe$_{2}$SSe$X_{2}$ ($X ={\rm Ga}$, In and Tl) are built by the decoration of Ga, In and Tl atoms in monolayer Fe$_{2}$SSe. In first-principles calculations, Fe$_{2}$SSe$X_{2}$ have stable structures and prefer ferromagnetic (FM) ordering, and can be considered as Weyl semimetals without spin-orbit coupling. For out-of-plane (OOP) magnetic anisotropy, large nontrivial gaps are opened and the Fe$_{2}$SSe$X_{2}$ are predicted to be large-gap QAH insulators with a high Chern number $C = 2$, proved by two chiral edge states and Berry curvature. When the magnetization is flipped, the two chiral edge states can be simultaneously changed and $C =-2$ can be obtained, revealing the fascinating behavior of chiral spin-edge state locking. It is found that the QAH properties of Fe$_{2}$SSe$X_{2}$ are robust against strain. In particular, nontrivial topological quantum states can spontaneously appear for Fe$_{2}$SSeGa$_{2}$ and Fe$_{2}$SSeIn$_{2}$ because the orientations of the easy magnetic axis are adjusted from in-plane to OOP by the biaxial strain. Our studies provide excellent candidate systems to realize QAH properties with a high Chern number, and suggest more experimental explorations combining superconductivity and topology.

Reference (68)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return