2024 Volume 33 Issue 10
Article Contents

Shuang Li(李双), Jing Zhou(周璟), Liu-Hong Zhu(朱柳红), Xiu-Fei Mei(梅秀菲), and Jun Yan(颜君). 2024: Fully relativistic energies, transition properties, and lifetimes of lithium-like germanium, Chinese Physics B, 33(10): 103102. doi: 10.1088/1674-1056/ad7c30
Citation: Shuang Li(李双), Jing Zhou(周璟), Liu-Hong Zhu(朱柳红), Xiu-Fei Mei(梅秀菲), and Jun Yan(颜君). 2024: Fully relativistic energies, transition properties, and lifetimes of lithium-like germanium, Chinese Physics B, 33(10): 103102. doi: 10.1088/1674-1056/ad7c30

Fully relativistic energies, transition properties, and lifetimes of lithium-like germanium

  • Received Date: 08/08/2024
    Accepted Date: 12/09/2024
  • Fund Project:

    Project supported by the Research Foundation for Higher Level Talents of West Anhui University (Grant No. WGKQ2021005).

  • Employing two fully relativistic methods, the multi-reference configuration Dirac-Hartree-Fock (MCDHF) method and the relativistic many-body perturbation theory (RMBPT) method, we report energies and lifetime values for the lowest 35 energy levels of the (1s$^2)nl$ configurations (where the principal quantum number $n = 2$-6 and the angular quantum number $l = 0$, …, $n-1$) of lithium-like germanium (Ge XXX), as well as complete data on the transition wavelengths, radiative rates, absorption oscillator strengths, and line strengths between the levels. Both the allowed (E1) and forbidden (magnetic dipole M1, magnetic quadrupole M2, and electric quadrupole E2) ones are reported. The results from the two methods are consistent with each other and align well with previous accurate experimental and theoretical findings. We assess the overall accuracies of present RMBPT results to be likely the most precise ones to date. The present fully relativistic results should be helpful for soft x-ray laser research, spectral line identification, plasma modeling and diagnosing. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.
  • 加载中
  • Ullmann J, Andelkovic Z and Brandau C, et al. 2017 Nat. Commun. 8 15484

    Google Scholar Pub Med

    Karr J P 2017 Nat. Phys. 13 533

    Google Scholar Pub Med

    Zhang G S, Deng B L, Yang J, Tang K, Meng B and Zhang X Q 2023 At. Data Nucl. Data Tables 149 101547

    Google Scholar Pub Med

    Skripnikov L V, Schmidt S, Ullmann J, Geppert C, Kraus F, Kresse B, Nortershauser W, Privalov A F, Scheibe B, Shabaev V M, Vogel M and Volotka A V 2018 Phys. Rev. Lett. 120 093001

    Google Scholar Pub Med

    Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I and Plunien G 2014 Phys. Rev. Lett. 112 253004

    Google Scholar Pub Med

    Yerokhin V A and Surzhykov A 2018 J. Phys. Chem. Ref. Data 47 023105

    Google Scholar Pub Med

    Li S, Zhao M, Liu G Q, Hu C B and Pan G Z 2023 Chin. Phys. B 32 103101

    Google Scholar Pub Med

    Liu X and Zhang J C 2023 J. Korean Phys. Soc. 82 154

    Google Scholar Pub Med

    Kumar P, Goyal A and Mohan M 2022 Eur. Phys. J. Plus 137 1253

    Google Scholar Pub Med

    Fontes C J and Zhang H L 2017 At. Data Nucl. Data Tables 113 293

    Google Scholar Pub Med

    Barzakh A, Andreyev A N, Raison C, et al. 2021 Phys. Rev. Lett. 127 192501

    Google Scholar Pub Med

    Deng B L, Jiang G and Zhang C Y 2014 At. Data Nucl. Data Tables 100 1337

    Google Scholar Pub Med

    Aggarwal K M and Keenan F P 2013 At. Data Nucl. Data Tables 99 156

    Google Scholar Pub Med

    Aggarwal K M and Keenan F P 2012 At. Data Nucl. Data Tables 98 1003

    Google Scholar Pub Med

    Liang G Y and Badnell N R 2011 Astron. Astrophys. 528 A69

    Google Scholar Pub Med

    Namba S, Wang J H, Ohiro H, Zhang J W, Kishimoto M, Yamasaki K, Hasegawa N, Dinh T, Ishino M, Higashiguchi T and Nishikino M 2022 Atoms 10 128

    Google Scholar Pub Med

    Mitra-Kraev U and Del Zanna G 2019 Astron. Astrophys. 628 A134

    Google Scholar Pub Med

    Neupert W M, Swartz M and Kastner S O 1973 Sol. Phys. 31 171

    Google Scholar Pub Med

    Boiko V, Faenov A and Pikuz S 1978 J. Quantum Spectrosc. Radiat. Transfer 19 11

    Google Scholar Pub Med

    Behring W E, Seely J F, Brown C M, Feldman U and Knauer J P 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 531

    Google Scholar Pub Med

    Hinnov E, the TFTR Operating Team, Denne B and the JET Operating Team 1989 Phys. Rev. A 40 4357

    Google Scholar Pub Med

    Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X and Liu H Q 2022 Phys. Scr. 97 045604

    Google Scholar Pub Med

    Epp S W, López-Urrutia J R C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W and Ullrich J 2007 Phys. Rev. Lett. 98 183001

    Google Scholar Pub Med

    Chen H, Gu M F, Behar E, Brown G V, Kahn S M and Beiersdorfer P 2007 Astrophys. J. Suppl. Ser. 168 319

    Google Scholar Pub Med

    Yan Z C, Tambasco M and Drake G W F 1998 Phys. Rev. A 57 1652

    Google Scholar Pub Med

    Li W X, Amarsi A M, Papoulia A, Ekman J and Jönsson P 2021 Mon. Not. R. Astron. Soc. 502 3780

    Google Scholar Pub Med

    Zhang D H, Zhang F J, Ding X B and Dong C Z 2021 Chin. Phys. B 30 043102

    Google Scholar Pub Med

    Zeng J L, Li Y J and Yuan J M 2021 J. Quantum Spectrosc. Radiat. Transfer 272 107777

    Google Scholar Pub Med

    Liu X, Zhang J C and Wang Z W 2019 Results Phys. 12 398

    Google Scholar Pub Med

    Santana J A, Peña-Cotto E L, Butler E J M, Beiersdorfer P and Brown V G 2019 Astrophys. J. Suppl. Ser. 245 9

    Google Scholar Pub Med

    Santana J A, Lopez-Dauphin N A and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 234 13

    Google Scholar Pub Med

    Santana J A, Lopez-Dauphin N A, Butler E J M and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 238 34

    Google Scholar Pub Med

    Chen Z B, Wang K and Guo X L 2018 J. Quantum Spectrosc. Radiat. Transfer 220 28

    Google Scholar Pub Med

    El-Maaref A A 2016 J. Quantum Spectrosc. Radiat. Transfer 170 45

    Google Scholar Pub Med

    Hao L H, Liu J J and Kang X P 2016 Eur. Phys. J. Plus 131 204

    Google Scholar Pub Med

    Cai J, Yu W W and Zhang N 2014 Chin. Phys. Lett. 31 093101

    Google Scholar Pub Med

    Gu M F 2005 At. Data Nucl. Data Tables 89 267

    Google Scholar Pub Med

    Nahar S N and Pradhan A 1999 Astron. Astrophys. Suppl. Ser. 135 347

    Google Scholar Pub Med

    Fischer C F, Saparov M, Gaigalas G and Godefroid M 1998 At. Data Nucl. Data Tables 70 119

    Google Scholar Pub Med

    Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513

    Google Scholar Pub Med

    Vainshtein L A and Safronova U I 1985 Phys. Scr. 31 519

    Google Scholar Pub Med

    Zhang H L, Sampson D H and Fontes C J 1990 At. Data Nucl. Data Tables 44 31

    Google Scholar Pub Med

    Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279

    Google Scholar Pub Med

    Khatri I, Goyal A, Aggarwal S, Singh A K and Mohan M 2016 Radiat. Phys. Chem. 123 46

    Google Scholar Pub Med

    Kramida A, Ralchenko Y, Reader J and NIST ASD Team Online 2023 NIST Atomic Spectra Database (version 5.11). Accessed 19 July 2024

    Google Scholar Pub Med

    Badnell N R 1986 J. Phys. B: At. Mol. Phys. 19 3827

    Google Scholar Pub Med

    Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184

    Google Scholar Pub Med

    Gu M F 2008 Can. J. Phys. 86 675

    Google Scholar Pub Med

    Wang K, Si R, Dang W, Jönsson P, Guo X L, Li S, Chen Z B, Zhang H, Long F Y, Liu H T, Li D F, Hutton R, Chen C Y and Yan J 2016 Astrophys. J. Suppl. Ser. 223 3

    Google Scholar Pub Med

    Wang K, Jönsson P, Ekman J, Gaigalas G, Godefroid M R, Si R, Chen Z B, Li S, Chen C Y and Yan J 2017 Astrophys. J. Suppl. Ser. 229 37

    Google Scholar Pub Med

    Si R, Li S, Guo X L, Chen Z B, Brage T, Jönsson P, Wang K, Yan J, Chen C Y and Zou Y M 2016 Astrophys. J. Suppl. Ser. 227 16

    Google Scholar Pub Med

    Wang K, Chen Z B, Si R, Jönsson P, Ekman J, Guo X L, Li S, Long F Y, Dang W, Zhao X H, Hutton R, Chen C Y, Yan J and Yang X 2016 Astrophys. J. Suppl. Ser. 226 14

    Google Scholar Pub Med

    Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004

    Google Scholar Pub Med

    Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W X, Li J G, Brage T, Grant I P, Bieroń J and Fischer C F 2022 Atoms 11 7

    Google Scholar Pub Med

    Jönsson P, Godefroid M, Gaigalas G, Ekman J, Grumer J, Li W X, Li J G, Brage T, Grant I P, Bieroń J and Fischer C F 2023 Atoms 11 68

    Google Scholar Pub Med

    Gu M F, Holczer T, Behar E and Kahn S 2006 Astrophys. J. 641 1227

    Google Scholar Pub Med

    Gu M F 2007 Astrophys. J. Suppl. Ser. 169 154

    Google Scholar Pub Med

    Lindgren I J 1974 J. Phys. B: At. Mol. Opt. Phys. 7 2441

    Google Scholar Pub Med

    Safronova U I, Safronova A S and Beiersdorfer P 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4491

    Google Scholar Pub Med

    Aggarwal K M, Keenan F P and Lawson K D 2008 At. Data Nucl. Data Tables 94 323

    Google Scholar Pub Med

    Fischer C F 2009 Phys. Scr. T134 014019

    Google Scholar Pub Med

    Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215

    Google Scholar Pub Med

    Wu C Q, Zhao R X, Zhang D H, Zhang M W, Xue Y L, Yu D Y, Dong C Z and Ding X B 2023 Eur. Phys. J. D 77 129

    Google Scholar Pub Med

    Behring W E, Seely J F, Brown C M, Feldman U and Knauer J P 1989 J. Opt. Soc. Am. B: Opt. Phys. 6 531

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(90) PDF downloads(0) Cited by(0)

Access History

Fully relativistic energies, transition properties, and lifetimes of lithium-like germanium

Fund Project: 

Abstract: Employing two fully relativistic methods, the multi-reference configuration Dirac-Hartree-Fock (MCDHF) method and the relativistic many-body perturbation theory (RMBPT) method, we report energies and lifetime values for the lowest 35 energy levels of the (1s$^2)nl$ configurations (where the principal quantum number $n = 2$-6 and the angular quantum number $l = 0$, …, $n-1$) of lithium-like germanium (Ge XXX), as well as complete data on the transition wavelengths, radiative rates, absorption oscillator strengths, and line strengths between the levels. Both the allowed (E1) and forbidden (magnetic dipole M1, magnetic quadrupole M2, and electric quadrupole E2) ones are reported. The results from the two methods are consistent with each other and align well with previous accurate experimental and theoretical findings. We assess the overall accuracies of present RMBPT results to be likely the most precise ones to date. The present fully relativistic results should be helpful for soft x-ray laser research, spectral line identification, plasma modeling and diagnosing. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135.

Reference (64)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return