2024 Volume 33 Issue 12
Article Contents

Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥). 2024: Micron-resolved quantum precision measurement of magnetic field at the Tesla level, Chinese Physics B, 33(12): 120305. doi: 10.1088/1674-1056/ad7e9b
Citation: Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥). 2024: Micron-resolved quantum precision measurement of magnetic field at the Tesla level, Chinese Physics B, 33(12): 120305. doi: 10.1088/1674-1056/ad7e9b

Micron-resolved quantum precision measurement of magnetic field at the Tesla level

  • Received Date: 29/07/2024
    Accepted Date: 20/09/2024
  • Fund Project:

    Project supported by the National Key R&D Program of China (Grant No. 2021YFB2012600). We acknowledge calibration support by Tieying Feng of Jiangsu Institute of Metrology.

  • We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer. Central to our system is a micron-sized fiber diamond probe positioned on the surface of a coplanar waveguide made of nonmagnetic materials. Calibrated with a nuclear magnetic resonance magnetometer, this probe demonstrates a broad magnetic field range from 10 mT to 1.5 T with a nonlinear error better than 0.0028% under a standard magnetic field generator and stability better than 0.0012% at a 1.5 T magnetic field. Finally, we demonstrate quantitative mapping of the vector magnetic field on the surface of a permanent magnet using the diamond magnetometer.
  • 加载中
  • Khan M A, Sun J, Li B D, Przybysz A and Kosel J 2012 Eng. Res. Express 3 022005

    Google Scholar Pub Med

    Javor J, Stange A, Pollock C, Fuhr N and Bishop D J 2020 Microsyst. Nanoeng. 6 71

    Google Scholar Pub Med

    Li Z, Ouyang Z R, Leng Z K, Zhang Y B, Zhang S, Lu Y F and Yan Z D 2022 Electronics 11 970

    Google Scholar Pub Med

    Wang X L and Wang F H 2020 J. Magn. Mater. Devices 6 63

    Google Scholar Pub Med

    Xu Z, Liu J and Zhang X X 2013 Modern Electronics Technique 12 29

    Google Scholar Pub Med

    Qu S S and He Z W 2013 Electrical Measurement & Instrumentation 50 98

    Google Scholar Pub Med

    Li X, Xiao L Z, Liu H B, Zhang Z F, Guo B X, Yu H J and Zong F R 2013 Acta Phys. Sin. 62 147602 (in Chinese)

    Google Scholar Pub Med

    Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401

    Google Scholar Pub Med

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644

    Google Scholar Pub Med

    Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J and Liu J 2021 Acta Phys. Sin 70 147601 (in Chinese)

    Google Scholar Pub Med

    Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105

    Google Scholar Pub Med

    Pham L M, Sage D L, Stanwix P L, Yeung T K, Glenn D, Trifonov A, Cappellaro P, Hemmer P R, Lukin M D, Park H, Yacoby A and Walsworth R L 2011 New J. Phys. 13 045021

    Google Scholar Pub Med

    Duan D, Du G X, Kavatamane V K, Arumugam S, Tzeng Y K, Chang H C and Balasubramanian G 2019 Opt. Express 27 6734

    Google Scholar Pub Med

    Yahata K, Matsuzaki Y, Saito S, Watanabe H and Ishi-Hayase S 2019 Appl. Phys. Lett. 114 022404

    Google Scholar Pub Med

    Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J and von Borczyskowski C 1997 Science 276 2012

    Google Scholar Pub Med

    Doherty M W, Michl J, Dolde F, Jakobi I, Neumann P, Manson N B and Wrachtrup J 2014 New J. Phys. 16 063067

    Google Scholar Pub Med

    Barson M S J, Krausz E, Manson N B and Doherty M W 2019 Nanophotonics 8 1985

    Google Scholar Pub Med

    Manson N B, Harrison J P and SellarsMJ 2006 Phys. Rev. B 74 104303

    Google Scholar Pub Med

    Chen G B, Gu B X, He W H, Guo Z G and Du G X 2020 IEEE J. Quantum Electron. 56 7500106

    Google Scholar Pub Med

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S and Budker D 2010 Phys. Rev. Lett. 104 070801

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(181) PDF downloads(1) Cited by(0)

Access History

Micron-resolved quantum precision measurement of magnetic field at the Tesla level

Fund Project: 

Abstract: We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer. Central to our system is a micron-sized fiber diamond probe positioned on the surface of a coplanar waveguide made of nonmagnetic materials. Calibrated with a nuclear magnetic resonance magnetometer, this probe demonstrates a broad magnetic field range from 10 mT to 1.5 T with a nonlinear error better than 0.0028% under a standard magnetic field generator and stability better than 0.0012% at a 1.5 T magnetic field. Finally, we demonstrate quantitative mapping of the vector magnetic field on the surface of a permanent magnet using the diamond magnetometer.

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return