2024 Volume 33 Issue 12
Article Contents

Siwen Li(李斯文), Yuxiang Ying(应宇翔), Tongxiao Jiang(姜童晓), and Deming Nie(聂德明). 2024: Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study, Chinese Physics B, 33(12): 124701. doi: 10.1088/1674-1056/ad84c3
Citation: Siwen Li(李斯文), Yuxiang Ying(应宇翔), Tongxiao Jiang(姜童晓), and Deming Nie(聂德明). 2024: Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study, Chinese Physics B, 33(12): 124701. doi: 10.1088/1674-1056/ad84c3

Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study

  • Received Date: 09/07/2024
    Accepted Date: 10/09/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12372251 and 12132015) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. 2023YW69).

  • The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of the Reynolds number (Re), aspect ratio ($\varepsilon$), squirmer-type factor ($\beta $) and blockage ratio ($\kappa$) on swimming efficiency ($\eta$) and power expenditure ($P$). The results show no significant difference in power expenditure between pushers (microswimmers propelled from the tail) and pullers (microswimmers propelled from the head) at the low Reynolds numbers adopted in this study. However, the swimming efficiency of pushers surpasses that of pullers. Moreover, as the degree of channel blockage increases (i.e., $\kappa $ increases), the squirmer rod consumes more energy while swimming, and its swimming efficiency also increases, which is clearly reflected when $\varepsilon \le 3$. Notably, squirmer rods with a larger aspect ratio $\varepsilon $ and a $\beta $ value approaching 0 can achieve high swimming efficiency with lower power expenditure. The advantages of self-propelled microswimmers are manifested when $\varepsilon > 4$ and $\beta = \pm 1$, where the squirmer rod consumes less energy than a passive rod driven by an external field. These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry, propulsion mechanism and fluid dynamic environment.
  • 加载中
  • Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, Pané S, Framme C and Bradley J N 2013 Invest. Ophthalmol. Vis. Sci. 54 2853

    Google Scholar Pub Med

    Agrahari V, Agrahari V, Chou M L, Chew C H, Noll J and Burnouf T 2020 Biomaterials 260 120163

    Google Scholar Pub Med

    Wei X, Beltrań-Gastélum M, Karshalev E, de Á vila B E F, Zhou J, Ran D, Angsantikul, Fang R H, Wang J and Zhang L 2019 Nano Lett. 19 1914

    Google Scholar Pub Med

    Wu Z, Li J, de Ávila B E F, Li T, Gao W, He Q, Zhang L and Wang J 2015 Adv. Funct. Mater. 25 7497

    Google Scholar Pub Med

    Shintake J, Cacucciolo V, Shea H and Floreano D 2018 Soft Robot. 5 466

    Google Scholar Pub Med

    Ren Z, Hu W, Dong X and Sitti M 2019 Nat. Commun. 10 2703

    Google Scholar Pub Med

    Huang C, Lv J, Tian X,Wang Y, Yu Y and Liu J 2015 Sci. Rep. 5 17414

    Google Scholar Pub Med

    Qiu F and Nelson B J 2015 Eng. 1 021

    Google Scholar Pub Med

    Gong D, Cai J, Celi N, Feng L, Jiang Y and Zhang D 2018 J. Magn. Magn. Mater. 468 148

    Google Scholar Pub Med

    Darmawan B A, Lee S B, Go G, Nguyen K T, Lee H S, Nan M, Hong A, Kim C S, Li H, Bang D, Park J and Choi E 2020 Sens. Actuators B Chem. 324 128752

    Google Scholar Pub Med

    Akolpoglu M B, Dogan N O, Bozuyuk U, Ceylan H, Kizilel S and Sitti M 2020 Adv. Sci. 7 2001256

    Google Scholar Pub Med

    Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak A F, Sourjik V and Sitti M 2018 Sci. Robot. 3 eaar4423

    Google Scholar Pub Med

    Magdanz V, Khalil I S M, Simmchen J, Furtado G P, Mohanty S, Gebauer J, Xu H, Klingner A, Aziz A, Medina-Sánchez M, Schmidt O G and Misra S 2020 Sci. Adv. 6 eaba5855

    Google Scholar Pub Med

    Blake J R 1971 Bull. Aust. Math. Soc. 5 255

    Google Scholar Pub Med

    Pedley T J 2016 IMA J. Appl. Math. 81 488

    Google Scholar Pub Med

    Magar V, Goto T and Pedley T J 2003 Q. J. Mech. Appl. Math. 56 65

    Google Scholar Pub Med

    Magar V and Pedley T J 2005 J. Fluid Mech. 539 93

    Google Scholar Pub Med

    Nie D, Ying Y, Guan G, Lin J and Ouyang Z 2023 J. Fluid Mech. 960 A31

    Google Scholar Pub Med

    Ishikawa T, Locsei J T and Pedley T J 2008 J. Fluid Mech. 615 401

    Google Scholar Pub Med

    Ying Y, Jiang T, Nie D and Lin J 2022 Phys. Fluids 34 013010

    Google Scholar Pub Med

    Fadda F, Molina J J and Yamamoto R 2020 Phys. Rev. E 101 052608

    Google Scholar Pub Med

    Rühle F and Stark H 2020 Eur. Phys. J. E 43 1

    Google Scholar Pub Med

    Zheng K, Wang J, Zhang P and Nie D 2023 AIP Adv. 13 025304

    Google Scholar Pub Med

    Li G J and Ardekani A M 2014 Phys. Rev. E 90 013010

    Google Scholar Pub Med

    Lucarini G, Palagi S, Beccai L and Menciassi A 2014 Int. J. Adv. Robot. Syst. 11 116

    Google Scholar Pub Med

    Acemoglu A and Yesilyurt S 2014 Biophys. J. 106 1537

    Google Scholar Pub Med

    Ullrich F, Qiu F, Pokki J, Huang T, Pané S and Nelson B J 2016 IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), June 26-29, 2016 Singapore, p. 470

    Google Scholar Pub Med

    Ghanbari A and Bahrami M 2011 J. Intell. Robot. Syst. 63 399

    Google Scholar Pub Med

    Omori T, Ito H and Ishikawa T 2020 Proc. Natl. Acad. Sci. USA 117 30201

    Google Scholar Pub Med

    Ouyang Z, Lin J and Ku X 2018 Phys. Fluids 30 085304

    Google Scholar Pub Med

    Leshansky A M, Kenneth O, Gat O and Avron J E 2007 New J. Phys. 9 145

    Google Scholar Pub Med

    Michelin S and Lauga E 2010 Phys. Fluids 22 011401

    Google Scholar Pub Med

    Chisholm N G, Legendre D, Lauga E and Khair A S 2016 J. Fluid Mech. 796 233

    Google Scholar Pub Med

    Eastham P S and Shoele K 2020 Phys. Rev. Fluids 5 063102

    Google Scholar Pub Med

    Binagia J P, Phoa A, Housiadas K D and Shaqfeh E S G 2020 J. Fluid Mech. 900 A4

    Google Scholar Pub Med

    Wang S and Ardekani A 2012 Phys. Fluids 24 013010

    Google Scholar Pub Med

    Zhu L, Lauga E and Brandt L 2013 J. Fluid Mech. 726 285

    Google Scholar Pub Med

    Ouyang Z, Lin Z, Lin J, Yu Z and Phan-Thien N 2023 J. Fluid Mech. 959 A25

    Google Scholar Pub Med

    Sahari A, Headen D and Behkam B 2012 Biomed. Microdevices 14 999

    Google Scholar Pub Med

    Merkel T J, Jones S W, Herlihy K P, Kersey F R, Shields A R, Napier M, Luft J C, Wu H, Zamboni W C, Wang A Z, Bear J E and DeSimone J M 2011 Proc. Natl. Acad. Sci. USA 108 586

    Google Scholar Pub Med

    Nejati S, Vadeghani E M, Khorshidi S and Karkhaneh A 2020 Eur. Polym. J. 122 109353

    Google Scholar Pub Med

    Christian D A, Cai S, Garbuzenko O B, Harada T, Zajac A L, Minko T and Discher D E 2009 Mol. Pharmaceutics 6 1343

    Google Scholar Pub Med

    Ying Y, Jiang T, Li S, Nie D and Lin J 2024 Phys. Scr. 99 025304

    Google Scholar Pub Med

    Zantop A W and Stark H 2020 Soft Matter 16 6400

    Google Scholar Pub Med

    Ouyang Z and Lin J 2021 Phys. Fluids 33 073102

    Google Scholar Pub Med

    Ishikawa T 2019 Micromachines 10 33

    Google Scholar Pub Med

    Biondi S A, Quinn J A and Goldfine H 1998 AIChE J. 44 1923

    Google Scholar Pub Med

    Zhang J, Liu K and Ding Y 2022 Chin. Phys. B 31 14702

    Google Scholar Pub Med

    He X and Luo L S 1997 Phys. Rev. E 56 6811

    Google Scholar Pub Med

    Wolf-Gladrow D A 2004Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (1st edn.) (Berlin: Springer) p. 9

    Google Scholar Pub Med

    Qian Y H, d’Humières D and Lallemand P 1992 Europhys. Lett. 17 479

    Google Scholar Pub Med

    Chapman S and Cowling T G 1970 Math. The Mathematical Theory of Non-Uniform Gases (3rd edn.) (Cambridge: Cambridge University Press) p. 119

    Google Scholar Pub Med

    Lallemand P and Luo L S 2003 J. Comput. Phys. 184 406

    Google Scholar Pub Med

    Mei R, Yu D, Shyy W and Luo L S 2002 Phys. Rev. E 65 041203

    Google Scholar Pub Med

    Aidun C K, Lu Y and Ding E J 1998 J. Fluid Mech. 373 287

    Google Scholar Pub Med

    Michelin S and Lauga E 2010 Phys. Fluids 22 113901

    Google Scholar Pub Med

    Li S, Ying Y and Nie D 2023 Fluid Dyn. Res. 55 055504

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(127) PDF downloads(1) Cited by(0)

Access History

Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study

Fund Project: 

Abstract: The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of the Reynolds number (Re), aspect ratio ($\varepsilon$), squirmer-type factor ($\beta $) and blockage ratio ($\kappa$) on swimming efficiency ($\eta$) and power expenditure ($P$). The results show no significant difference in power expenditure between pushers (microswimmers propelled from the tail) and pullers (microswimmers propelled from the head) at the low Reynolds numbers adopted in this study. However, the swimming efficiency of pushers surpasses that of pullers. Moreover, as the degree of channel blockage increases (i.e., $\kappa $ increases), the squirmer rod consumes more energy while swimming, and its swimming efficiency also increases, which is clearly reflected when $\varepsilon \le 3$. Notably, squirmer rods with a larger aspect ratio $\varepsilon $ and a $\beta $ value approaching 0 can achieve high swimming efficiency with lower power expenditure. The advantages of self-propelled microswimmers are manifested when $\varepsilon > 4$ and $\beta = \pm 1$, where the squirmer rod consumes less energy than a passive rod driven by an external field. These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry, propulsion mechanism and fluid dynamic environment.

Reference (57)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return