2024 Volume 33 Issue 12
Article Contents

Siqi Li(李思琦), Pengfei Shao(邵鹏飞), Xiao Liang(梁潇), Songlin Chen(陈松林), Zhenhua Li(李振华), Xujun Su(苏旭军), Tao Tao(陶涛), Zili Xie(谢自力), Bin Liu(刘斌), M. Ajmal Khan, Li Wang, T. T. Lin, Hideki Hirayama, Rong Zhang(张荣), and Ke Wang(王科). 2024: Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition, Chinese Physics B, 33(12): 126801. doi: 10.1088/1674-1056/ad84cc
Citation: Siqi Li(李思琦), Pengfei Shao(邵鹏飞), Xiao Liang(梁潇), Songlin Chen(陈松林), Zhenhua Li(李振华), Xujun Su(苏旭军), Tao Tao(陶涛), Zili Xie(谢自力), Bin Liu(刘斌), M. Ajmal Khan, Li Wang, T. T. Lin, Hideki Hirayama, Rong Zhang(张荣), and Ke Wang(王科). 2024: Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition, Chinese Physics B, 33(12): 126801. doi: 10.1088/1674-1056/ad84cc

Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition

  • Received Date: 27/07/2024
    Accepted Date: 23/09/2024
  • Fund Project:

    Project supported by the National Key R&D Program of China (Grant No. 2022YFB3605600), the National Natural Science Foundation of China (Grant No. 61974065), the Key R&D Project of Jiangsu Province, China (Grant Nos. BE2020004-3 and BE2021026), Postdoctoral Fellowship Program of CPSF (Grant No. GZC20231098), the Jiangsu Special Professorship, Collaborative Innovation Center of Solid State Lighting and Energy-saving Electronics.

  • We report molecular beam epitaxial growth and electrical and ultraviolet light emitting properties of (AlN)$m$/(GaN)$n$ superlattices (SLs), where $m$ and $n$ represent the numbers of monolayers. Clear satellite peaks observed in XRD 2$\theta $-$\omega $ scans and TEM images evidence the formation of clear periodicity and atomically sharp interfaces. For (AlN)$m$/(GaN)$n$ SLs with an average Al composition of 50%, we have obtained an electron density up to 4.48$\times10^{19}$ cm$^{-3}$ and a resistivity of 0.002 $\Omega\cdot$cm, and a hole density of 1.83$\times10^{18}$ cm$^{-3}$ with a resistivity of 3.722 $\Omega \cdot$cm, both at room temperature. Furthermore, the (AlN)$m$/(GaN)$n$ SLs exhibit a blue shift for their photoluminescence peaks, from 403 nm to 318 nm as GaN is reduced from $n=11$ to $n=4$ MLs, reaching the challenging UVB wavelength range. The results demonstrate that the (AlN)$m$/(GaN)$n$ SLs have the potential to enhance the conductivity and avoid the usual random alloy scattering of the high-Al-composition ternary AlGaN, making them promising functional components in both UVB emitter and AlGaN channel high electron mobility transistor applications.
  • 加载中
  • Kneissl M, Seong T Y, Han J and Amano H 2019 Nat. Photon. 13 233

    Google Scholar Pub Med

    Kneissl M and Rass J 2016 Springer Series in Material Science (Vol. 227) (Switzerland: Springer International Publishing) pp. 115- 215

    Google Scholar Pub Med

    Arulkumaran S, Vicknesh S, Ng G, Liu Z H, Bryan M and Lee C H 2010 Electrochem. Solid-State Lett. 13 H169

    Google Scholar Pub Med

    Xie J, Mita S, Bryan Z, Guo W, Hussey L, Moody B, Schlesser R, Kirste R, Gerhold M, Collazo R and Sitar Z 2013 Appl. Phys. Lett. 102 171102

    Google Scholar Pub Med

    Lachab M, Sun W, Jain R, Dobrinsky A, Gaevski M, Rumyantsev S, Shur M and Shatalov M 2017 Appl. Phys. Express 10 012702

    Google Scholar Pub Med

    Khan M A, Yamada Y and Hirayama H 2024 Phys. Status Solidi A 13 2300581

    Google Scholar Pub Med

    Khan M A, Itokazu Y, Maeda N, Jo M, Yamada Y and Hirayama H 2020 ACS Appl. Electron. Mater. 2 1892

    Google Scholar Pub Med

    Fischer A J, Allerman A A, Crawford M H, Bogart K H A, Lee S R, Kaplar R J, Chow W W, Kurtz S R, Fullmer K W and Figiel J J 2004 Appl. Phys. Lett. 84 3394

    Google Scholar Pub Med

    Bryan I, Bryan Z, Mita S, Rice A, Hussey L, Shelton C, Tweedie J, Maria J, Collazo R and Sitar Z 2016 J. Cryst. Growth. 451 65

    Google Scholar Pub Med

    Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H and Hao Y 2023 Opt. Express 13 20850

    Google Scholar Pub Med

    Tanaka S, Teramura S, Shimokawa M, Yamada K, Omori T, Iwayama S, Sato K, Miyake H, Iwaya M, Takeuchi T, Kamiyama S and Akasaki I 2021 Appl. Phys. Express 14 055505

    Google Scholar Pub Med

    Kamarundzaman A, Bakar A S, Azman A, Omar A Z, Talik N A, Supangat A and Abd Majid W H 2021 Sci. Rep. 11 9724

    Google Scholar Pub Med

    Stanchu H V, Kuchuk A V, Lytvyn P M, Mazur Y I, Maidaniuk Y, Benamara M, Li S B, Kryvyi S, Kladko V P, Belyaev A E, Wang Zh M and Salamo G J 2018 Mater. Des. 157 141

    Google Scholar Pub Med

    NanjoT, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263502

    Google Scholar Pub Med

    Coltrin M E, Baca A G and Kaplar R J 2017 ECS J. Solid State Sci. Technol. 6 S3114

    Google Scholar Pub Med

    MaedaR, Ueno K, Kobayashi A and Fujioka H 2022 Appl. Phys. Express 15 031002

    Google Scholar Pub Med

    Baca A G, Klein B A, Wendt J R, Lepkowski S M, Nordquist C D, Armstrong A M, Allerman A A, Douglas E A and Kaplar R J 2019 IEEE Electron Device Lett. 40 17

    Google Scholar Pub Med

    Singhal J, Chaudhuri R, Hickman A, Protasenko V, Xing H G and Jena D 2022 APL Mater. 10 111120

    Google Scholar Pub Med

    Khachariya D, Mita S, Reddy P, Dangi S, Dycus J H, Bagheri P, Breckenridge M H, Sengupta R, Rathkanthiwar S, Kirste R, Kohn E, Sitar Z, Collazo R and Pavlidis S 2022 Appl. Phys. Lett. 120 172106

    Google Scholar Pub Med

    Khan M A, Kuznia J N, Olson D T, George T and PikeWT 1993 Appl. Phys. Lett. 63 3470

    Google Scholar Pub Med

    Islam S M, Protasenko V, Lee K, Rouvimov S, Verma J, Xing H and Jena D 2017 Appl. Phys. Lett. 111 091104

    Google Scholar Pub Med

    Gao N, Feng X, Lu S Q, Lin W, Zhuang Q Q, Chen H Y, Huang K, Li S P and Kang J Y 2019 Cryst. Growth Des. 19 1720

    Google Scholar Pub Med

    Jmerik V, Toropov A, Davydov V and Ivanov S 2021 Phys Status Solidi Rapid Res. Lett. 15 2100242

    Google Scholar Pub Med

    Sun W, Tan C K and Tansu N 2017 Sci. Rep. 7 11826

    Google Scholar Pub Med

    Nikishin S A, Holtz M and Temkin H 2005 Jpn. J. Appl. Phys. 44 7221

    Google Scholar Pub Med

    Kipshidze G, Kuryatkov V, Zhu K, Borisov B, Holtz M, Nikishin S and Temkin H 2003 J. Appl. Phys. 93 1363

    Google Scholar Pub Med

    Wille A, Yacoub H, Debald A, Kalisch H and Vescan A 2015 J. Electron. 44 1263

    Google Scholar Pub Med

    Itakura H, Nomura T, Arita N, Okada N, Wetzel C M, Chow T P and Tadatomo K 2020 AIP Advances 10 025133

    Google Scholar Pub Med

    Nikishin S A 2018 Appl. Sci. 8 2362

    Google Scholar Pub Med

    Wang J M, Wang M X, Xu F J, Liu B Y, Lang J, Zhang N, Kang X N, Qin Z X, Yang X L, Wang X Q, Ge W K and Shen B 2022 Light Sci. Appl. 11 71

    Google Scholar Pub Med

    Shao P F, Fan X, Li S Q, Chen S L, Zhou H, Liu H, Guo H, Xu W. Z, Tao T, Xie Z L, Lu H,Wang K, Liu B, Chen D J, Zheng Y D and Zhang R 2023 Appl. Phys. Lett. 122 142102

    Google Scholar Pub Med

    Shao P F, Li S Q, Zhou H, Li Z H, Zhang D Q, Tao T, Yan Y, Xie Z L, Wang K, Liu B, Chen D J, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama H 2022 J. Phys. D: Appl. Phys. 55 364002

    Google Scholar Pub Med

    Li S Q, Liang X, Shao P F, Chen S L, Li Z H, Su X J, Tao T, Xie Z L, Khan M A, Wang L, Lin T T, Hirayama H, Liu B, Chen D J, Wang K and Zhang R 2024 Appl. Phys. Lett. 125 112102

    Google Scholar Pub Med

    Li Z H, Shao P F, Wu Y Z, Shi G J, Tao T, Xie Z L, Chen P, Zhou Y G, Xiu X Q, Chen D J, Liu B, Wang K, Zheng Y D, Zhang R, Lin T, Wang L and Hirayama H 2021 Jpn. J. Appl. Phys. 60 075504

    Google Scholar Pub Med

    Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102

    Google Scholar Pub Med

    Smorchkova I P, Haus E, Heying B, Kozodoy P, Fini P, Ibbetson J P, Keller S, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 76 718

    Google Scholar Pub Med

    Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Saito M, Fujito K, Speck J S, Nakamura S and DenBaars S P 2007 Phys. Stat. Sol. (RRL) 1 125

    Google Scholar Pub Med

    Ivanov S V, Nechaev D V, Sitnikova A A, Ratnikov V V, Yagovkina M A, Rzheutskii N V, Lutsenko E V and Jmerik V N 2014 Semicond. Sci. Technol. 29 084008

    Google Scholar Pub Med

    Zhang H P, Xue J S, Fu Y R, Yang M, Zhang Y C, Duan X L, Qiang W T, Li L X, Sun Z P, Ma X H, Zhang J C and Hao Y 2020 J. Cryst. Growth. 535 125539

    Google Scholar Pub Med

    Sun W, Tan C K and Tansu N 2017 Sci. Rep. 7 6671

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(141) PDF downloads(0) Cited by(0)

Access History

Molecular beam epitaxial growth and physical properties of AlN/GaN superlattices with an average 50% Al composition

Fund Project: 

Abstract: We report molecular beam epitaxial growth and electrical and ultraviolet light emitting properties of (AlN)$m$/(GaN)$n$ superlattices (SLs), where $m$ and $n$ represent the numbers of monolayers. Clear satellite peaks observed in XRD 2$\theta $-$\omega $ scans and TEM images evidence the formation of clear periodicity and atomically sharp interfaces. For (AlN)$m$/(GaN)$n$ SLs with an average Al composition of 50%, we have obtained an electron density up to 4.48$\times10^{19}$ cm$^{-3}$ and a resistivity of 0.002 $\Omega\cdot$cm, and a hole density of 1.83$\times10^{18}$ cm$^{-3}$ with a resistivity of 3.722 $\Omega \cdot$cm, both at room temperature. Furthermore, the (AlN)$m$/(GaN)$n$ SLs exhibit a blue shift for their photoluminescence peaks, from 403 nm to 318 nm as GaN is reduced from $n=11$ to $n=4$ MLs, reaching the challenging UVB wavelength range. The results demonstrate that the (AlN)$m$/(GaN)$n$ SLs have the potential to enhance the conductivity and avoid the usual random alloy scattering of the high-Al-composition ternary AlGaN, making them promising functional components in both UVB emitter and AlGaN channel high electron mobility transistor applications.

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return