2024 Volume 33 Issue 11
Article Contents

Peter D. Nellist and Timothy J. Pennycook. 2024: Making the link between ADF and 4D STEM: Resolution, transfer and coherence, Chinese Physics B, 33(11): 116803. doi: 10.1088/1674-1056/ad8554
Citation: Peter D. Nellist and Timothy J. Pennycook. 2024: Making the link between ADF and 4D STEM: Resolution, transfer and coherence, Chinese Physics B, 33(11): 116803. doi: 10.1088/1674-1056/ad8554

Making the link between ADF and 4D STEM: Resolution, transfer and coherence

  • Received Date: 03/09/2024
    Accepted Date: 05/10/2024
  • Fund Project:

    We acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme via Grant Agreement No. 802123-HDEM (TJP) and from the UK Engineering and Physical Sciences Research Council (EPSRC) via grant EP/M010708/1 (PDN).

  • PACS: 68.37.Ma; 42.30.Va; 42.30.Rx; 87.64.Ee

  • Steve Pennycook is a pioneer in the application of high-resolution scanning transmission electron microscopy (STEM) and in particular the use of annular dark-field (ADF) imaging. Here we show how a general framework for 4D STEM allows clear links to be made between ADF imaging and the emerging methods for reconstructing images from 4D STEM data sets. We show that both ADF imaging and ptychographical reconstruction can be thought of in terms of integrating over the overlap regions of diffracted discs in the detector plane. This approach allows the similarities in parts of their transfer functions to be understood, though we note that the transfer functions for ptychographic imaging cannot be used as a measure of information transfer. We also show that conditions of partial spatial and temporal coherence affect ADF imaging and ptychography similarly, showing that achromatic interference can always contribute to the image in both cases, leading to a robustness to partial temporal coherence that has enabled high-resolution imaging.
  • 加载中
  • Howie A 1979 Journal of Microscopy 117 11

    Google Scholar Pub Med

    McGibbon A J, Pennycook S J and Angelo J E 1995 Science 269 519

    Google Scholar Pub Med

    Nellist P D and Pennycook S J 1996 Science 274 413

    Google Scholar Pub Med

    Müller K, Krause F F, Béché A, Schowalter M, Galioit V, Löffler S, Verbeeck J, Zweck J, Schattschneider P and Rosenauer A 2014 Nat. Commun. 5 5653

    Google Scholar Pub Med

    Lazić I, Bosch E G T and Lazar S 2016 Ultramicroscopy 160 265

    Google Scholar Pub Med

    Krivanek O L, Dellby N and Lupini A R 1999 Ultramicroscopy 78 1

    Google Scholar Pub Med

    Rodenburg J M and Bates R H T 1992 Phil. Trans. Roy. Soc. Lond. Ser. A: Phys. Eng. Sci. 339 521

    Google Scholar Pub Med

    Hoppe W 1969 Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 25 495

    Google Scholar Pub Med

    Hawkes P W 1982 Ultramicroscopy 9 27

    Google Scholar Pub Med

    Nellist P D and Pennycook S J 2000 Advances in Imaging and Electron Physics 113 147

    Google Scholar Pub Med

    Loane R F, Xu P and Silcox J 1992 Ultramicroscopy 40 121

    Google Scholar Pub Med

    Pennycook S J and Jesson D E 1990 Physical Review Letters 64 938

    Google Scholar Pub Med

    Nellist P D and Pennycook S J 1999 Ultramicroscopy 78 111

    Google Scholar Pub Med

    Song W, Perez-Osorio M A, Marie J J, Liberti E, Luo X, O’Leary C, House R A, Bruce P G and Nellist P D 2022 Joule 6 1049

    Google Scholar Pub Med

    Maiden A M and Rodenburg J M 2009 Ultramicroscopy 109 1256

    Google Scholar Pub Med

    Maiden A M, Humphry M J and Rodenburg J M 2012 J. Opt. Soc. Am. A 29 1606

    Google Scholar Pub Med

    Müller-Caspary K, Krause F F, Grieb T, Löffler S, Schowalter M, Beché A, Galioit V, Marquardt D, Zweck J, Schattschneider P, Verbeeck J and Rosenauer A 2017 Ultramicroscopy 178 62

    Google Scholar Pub Med

    Black G and Linfoot E H 1957 Math. Phys. Eng. Sci. 239 522

    Google Scholar Pub Med

    Nellist P D and Pennycook S J 1998 Journal of Microscopy 190 159

    Google Scholar Pub Med

    McGibbon A J, Pennycook S J and Jesson D E 1999 Journal of Microscopy 195 44

    Google Scholar Pub Med

    Pennycook T J, Lupini A R, Yang H, Murfitt M F, Jones L and Nellist P D 2015 Ultramicroscopy 151 160

    Google Scholar Pub Med

    Yang H, Rutte R N, Jones L, Simson M, Sagawa R, Ryll H, Huth M, Pennycook T J, Green M L H, Soltau H, Kondo Y, Davis B G and Nellist P D 2016 Nat. Commun. 7 12532

    Google Scholar Pub Med

    Seki T, Ikuhara Y and Shibata N 2018 Ultramicroscopy 193 118

    Google Scholar Pub Med

    Dwyer C and Paganin D M 2024 Phys. Rev. B 110 024110

    Google Scholar Pub Med

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstrčil M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G and Muller D A 2021 Science 372 826

    Google Scholar Pub Med

    Nellist P D, McCallum B C and Rodenburg J M 1995 Nature 374 630

    Google Scholar Pub Med

    Nellist P D and Pennycook S J 1998 Phys. Rev. Lett. 81 4156

    Google Scholar Pub Med

    Nellist P D and Rodenburg J M 1994 Ultramicroscopy 54 61

    Google Scholar Pub Med

    Pennycook T J, Martinez G T, Nellist P D and Meyer J C 2019 Ultramicroscopy 196 131

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(203) PDF downloads(5) Cited by(0)

Access History

Making the link between ADF and 4D STEM: Resolution, transfer and coherence

Fund Project: 

Abstract: Steve Pennycook is a pioneer in the application of high-resolution scanning transmission electron microscopy (STEM) and in particular the use of annular dark-field (ADF) imaging. Here we show how a general framework for 4D STEM allows clear links to be made between ADF imaging and the emerging methods for reconstructing images from 4D STEM data sets. We show that both ADF imaging and ptychographical reconstruction can be thought of in terms of integrating over the overlap regions of diffracted discs in the detector plane. This approach allows the similarities in parts of their transfer functions to be understood, though we note that the transfer functions for ptychographic imaging cannot be used as a measure of information transfer. We also show that conditions of partial spatial and temporal coherence affect ADF imaging and ptychography similarly, showing that achromatic interference can always contribute to the image in both cases, leading to a robustness to partial temporal coherence that has enabled high-resolution imaging.

Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return