2025 Volume 34 Issue 1
Article Contents

Jiale Lu(卢家乐)†, Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东)‡, and Xiaofang Hu(胡小方)§. 2025: A physical memristor model for Pavlovian associative memory, Chinese Physics B, 34(1): 018703. doi: 10.1088/1674-1056/ad8b37
Citation: Jiale Lu(卢家乐)†, Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东)‡, and Xiaofang Hu(胡小方)§. 2025: A physical memristor model for Pavlovian associative memory, Chinese Physics B, 34(1): 018703. doi: 10.1088/1674-1056/ad8b37

A physical memristor model for Pavlovian associative memory

  • Received Date: 09/09/2024
    Accepted Date: 21/10/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62476230 and 61976246), the Natural Science Foundation of Chongqing (Grant No. CSTB2023NSCQ-MSX0018), and Fundamental Research Funds for the Central Universities (Grant No. SWUKR22046).

  • Brain-inspired intelligence is considered to be a computational model with the most promising potential to overcome the shortcomings of the von Neumann architecture, making it a current research hotspot. Due to advantages such as nonvolatility, high density, low power consumption, and high response ratio, memristors are regarded as devices with promising applications in brain-inspired intelligence. This paper proposes a physical Ag/HfO$_{x}$/FeO$_{x}$/Pt memristor model. The Ag/HfO$_{x}$/FeO$_{x}$/Pt memristor is first fabricated using magnetron sputtering, and its internal principles and characteristics are then thoroughly analyzed. Furthermore, we construct a corresponding physical memristor model which achieves a simulation accuracy of up to 99.72% for the physical memristor. We design a fully functional Pavlovian associative memory circuit, realizing functions including generalization, primary differentiation, secondary differentiation, and forgetting. Finally, the circuit is validated through PSPICE simulation and analysis.
  • 加载中
  • Shaafiee M, Logeswaran R and Seddon A 2017 Proceedings of the 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, August 2-6, 2017, Noida, India, p. 199

    Google Scholar Pub Med

    Petrenko S 2018 Big Data Technologies for Monitoring of Computer Security: A Case Study of the Russian Federation (Cham: Springer International Publishing) pp.115-173

    Google Scholar Pub Med

    Xue S 2021 International Core Journal of Engineering 7 330

    Google Scholar Pub Med

    Neftci E O 2018 iScience 5 52

    Google Scholar Pub Med

    Roy K, Jaiswal A and Panda P 2019 Nature 575 607

    Google Scholar Pub Med

    Shastri B J, Tait A N, Ferreira de Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R 2021 Nat. Photonics 15 102

    Google Scholar Pub Med

    Bartolozzi C, Indiveri G and Donati E 2022 Nat. Commun. 13 1024

    Google Scholar Pub Med

    Shao N, Zhang S B and Shao S Y 2019 Acta Phys. Sin. 68 018501

    Google Scholar Pub Med

    Zhu L J, Wang F Q 2019 Acta Phys. Sin. 68 198501 (in Chinese)

    Google Scholar Pub Med

    Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80

    Google Scholar Pub Med

    Zhou G, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, et al. 2021 Advanced Science 8 2003765

    Google Scholar Pub Med

    Abunahla H and Mohammad B 2018 Memristor Technology: Synthesis and Modeling for Sensing and Security Applications (Cham: Springer International Publishing) pp. 1-29

    Google Scholar Pub Med

    Muhammad N M, Duraisamy N, Rahman K, Dang H W, Jo J D and Choi K H 2013 Curr. Appl. Phys. 13 90

    Google Scholar Pub Med

    Zhang W G, Gao H, Deng C S, Lv T, Hu S L, Wu H, Xue S Y, Tao Y F, Deng L M and Xiong W 2021 Nanoscale 13 11497

    Google Scholar Pub Med

    Li M C, Wu E X, Xu L Y, Hu X D, Miao X P and Liu J 2023 Phys. Status Solidi A 220 2300204

    Google Scholar Pub Med

    Zhu W Y, Pu Y F, Liu B, Yu B and Zhou J L 2022 Chin. Phys. B 31 060204

    Google Scholar Pub Med

    Joglekar Y N and Wolf S J 2009 Eur. J. Phys. 30 661

    Google Scholar Pub Med

    Biolek Z, Biolek D and Biolkova V 2009 Radioengineering 18 2

    Google Scholar Pub Med

    SumaLata G L and Shrivastava A K 2021 Cognitive Informatics and Soft Computing (Singapore: Springer Nature Singapore) pp. 403-428

    Google Scholar Pub Med

    Kvatinsky S, Friedman E G, Kolodny A and Weiser U C 2013 IEEE Trans. Circuits Syst. I: Regular Papers 60 211

    Google Scholar Pub Med

    Kvatinsky S, Ramadan M, Friedman E G and Kolodny A 2015 IEEE Trans. Circuits Syst. II: Express Briefs 62 786

    Google Scholar Pub Med

    Yakopcic C, Taha T M, Mountain D J, Salter T, Marinella M J and McLeanM2020 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 39 1084

    Google Scholar Pub Med

    Yakopcic C, Taha T M, Subramanyam G, Pino R E and Rogers S 2011 IEEE Electron Device Lett. 32 1436

    Google Scholar Pub Med

    Ji X, Dong Z, Lai C S, Zhou G and Qi D 2022 Mater. Today Adv. 16 100293

    Google Scholar Pub Med

    Konlechner R, Allagui A, Antonov V N and Yudin D 2023 Physica A 614 128555

    Google Scholar Pub Med

    Akgül F D, Eymur S, Akın U, Yüksel O F, Karadeniz H and Tugluoglu N 2021 J. Mater. Sci. Mater. Electron. 32 15857

    Google Scholar Pub Med

    Yuan J S and Liou J J 2013 Semiconductor Device Physics and Simulation (Springer Science & Business Media)

    Google Scholar Pub Med

    Chen L, Li C and Chen Y 2018 Int. J. Bifurcation Chaos 28 1850080

    Google Scholar Pub Med

    Ziegler M, Soni R, Patelczyk T, Ignatov M, Bartsch T, Meuffels P and Kohlstedt H 2012 Adv. Funct. Mater. 22 2744

    Google Scholar Pub Med

    Li Y, Xu L, Zhong Y P, Zhou Y X, Zhong S J, Hu Y Z, Chua L O and Miao X S 2015 Adv. Electron. Mater. 1 1500125

    Google Scholar Pub Med

    Shang M and Wang X 2020 Neurocomputing 389 18

    Google Scholar Pub Med

    Dong Z, Qian Z, Zhou G, Ji X, Qi D and Lai J 2022 J. Electron. Inf. Technol. 44 2080

    Google Scholar Pub Med

    Sun J,Wang Y, Liu P,Wen S andWang Y 2023 IEEE Trans. Cybernetics 53 3351

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(373) PDF downloads(2) Cited by(0)

Access History

A physical memristor model for Pavlovian associative memory

Fund Project: 

Abstract: Brain-inspired intelligence is considered to be a computational model with the most promising potential to overcome the shortcomings of the von Neumann architecture, making it a current research hotspot. Due to advantages such as nonvolatility, high density, low power consumption, and high response ratio, memristors are regarded as devices with promising applications in brain-inspired intelligence. This paper proposes a physical Ag/HfO$_{x}$/FeO$_{x}$/Pt memristor model. The Ag/HfO$_{x}$/FeO$_{x}$/Pt memristor is first fabricated using magnetron sputtering, and its internal principles and characteristics are then thoroughly analyzed. Furthermore, we construct a corresponding physical memristor model which achieves a simulation accuracy of up to 99.72% for the physical memristor. We design a fully functional Pavlovian associative memory circuit, realizing functions including generalization, primary differentiation, secondary differentiation, and forgetting. Finally, the circuit is validated through PSPICE simulation and analysis.

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return