2024 Volume 33 Issue 12
Article Contents

Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵)†, and Shishou Kang(康仕寿)‡. 2024: Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max, Chinese Physics B, 33(12): 127504. doi: 10.1088/1674-1056/ad8cba
Citation: Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵)†, and Shishou Kang(康仕寿)‡. 2024: Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max, Chinese Physics B, 33(12): 127504. doi: 10.1088/1674-1056/ad8cba

Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max

  • Received Date: 22/07/2024
    Accepted Date: 15/10/2024
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12074220 and 11627805) and the National Key Research and Development Program of China (Grant No. 2023YFA1406604).

  • The melt-spun ribbons of nominal composition Pr$_{9}$Fe$_{84.2-x}$B$_{6.2}$P$_{0.3}$Zr$_{0.3}$Cu$_{x}$ ($x=0$, 0.5, 1, 2) were prepared at wheel speeds of 21 m$\cdot$s$^{-1}$, 27 m$\cdot$s$^{-1}$, 30 m$\cdot$s$^{-1}$, and 33 m$\cdot$s$^{-1}$. The XRD patterns show that as the wheel speed increases, the crystallinity of the 2:14:1 hard phase decreases, while that of the $\alpha $-Fe soft phase increases. The $(BH)_{\rm max}$, remanence, and coercivity are improved from 63 kJ$\cdot$m$^{-3}$, 0.85 T, and 515 kA$\cdot$m$^{-1}$ for the Cu-free ribbons to 171 kJ$\cdot$m$^{-3}$, 1.08 T, and 684 kA$\cdot$m$^{-1}$ with $x=0.5$. The high squareness ratio of $J_{\rm r}/J_{\rm s} \sim 0.82$ at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$) indicates strong exchange coupling due to small grain sizes of 15 nm and 30 nm for soft and hard magnetic phases, respectively. The SEM images revealed smooth morphology and uniform element distribution at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$), contributing to the high magnetic properties. The low recoil permeability ($\mu_{\rm rec}$) value of $5.466\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ to $1.970\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ confirms the strong exchange coupling with $x=0.5$ (27 m$\cdot$s$^{-1}$). The initial magnetization curves show that the coercivity mechanism of the Cu-free alloy evolves from the nucleation of the reverse domain to the domain wall pinning as the wheel speed increases, resulting in a high coercivity value of 818 kA$\cdot$m$^{-1}$ (33 m$\cdot$s$^{-1}$). Conversely, for the Cu-added alloy, the coercivity mechanism changes from pinning to the nucleation of the reverse domain from low to high wheel speed.
  • 加载中
  • Gutfleisch O, Willard MA, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821

    Google Scholar Pub Med

    Szmaja W, Grobelny J, Cichomski M, Hirosawa S and Shigemoto Y 2011 Acta Mater. 59 531

    Google Scholar Pub Med

    Li Y, Fan X, Jia Z, Fan L, Ding G, Liu X, Guo S, Zheng B, Cao S, Chen R and Yan A 2024 Chin. Phys. B 33 037508

    Google Scholar Pub Med

    Liu Z, He J and Ramanujan R V 2021 Mater. Des. 209 110004

    Google Scholar Pub Med

    Mican S, Hirian R, Isnard O, Chicinaş I and Pop V 2015 Phys. Procedia 75 1314

    Google Scholar Pub Med

    Hewei D, Chunxiang C, Wei Y and Jibing S 2017 J. Rare Earths 35 468

    Google Scholar Pub Med

    Coey J M D 2020 J. Eng. 6 119

    Google Scholar Pub Med

    Wang L, Quan Q, Zhang L, Hu X, Rehman S, Jiang Q, Du J and Zhong J 2018 Appl. Phys. 123 113904

    Google Scholar Pub Med

    Yang Z, Chen Y, Liu W, Li Y, Cong L, Wu Q, Zhang H, Lu Q, Zhang D and Yue M 2023 Chin. Phys. B 32 047504

    Google Scholar Pub Med

    Zeng X R, Sheng H C, Jin C X and Qian H X 2016 J. Magn. Magn. Mater. 401 1155

    Google Scholar Pub Med

    Herbst J F 1991 Rev. Mod. Phys. 63 819

    Google Scholar Pub Med

    Yang S, Liu X, Li S, Qin W, Song X, Lu M and Du Y 2003 J. Alloys Compd. 358 316

    Google Scholar Pub Med

    Goll D and Kronmüller H 2000 Sci. Nat. 87 423

    Google Scholar Pub Med

    Rong C and Shen B 2011 Chin. Phys. B 27 117502

    Google Scholar Pub Med

    Kanekiyo H, Uehara M and Hirosawa S 1993 IEEE Tran. Magn. 29 2863

    Google Scholar Pub Med

    Zhang W Y, Kharel P, Al-Omari I A, Shield J E and Sellmyer D J 2016 Phil. Mag. 96 2800

    Google Scholar Pub Med

    Wang C Z, Liu L, Sun Y L, Zhao J T, Zhou B, Tu S S,Wang C G, Ding Y and Yan A R 2023 Chin. Phys. B 32 020704

    Google Scholar Pub Med

    Alam M K, Han G B and Kang S S 2021 J. Magn. Magn. Mater. 517 167345

    Google Scholar Pub Med

    Zhang W, Kazahari A, Yubuta K, Makino A, Wang Y, Umetsu R and Li Y 2014 J. Alloys Compd. 586 294

    Google Scholar Pub Med

    Bao X, Gao X, Zhang M, Qiao Y, Guo X, Zhu J and Zhou S 2008 J. Uni. Sci. Tech. Beijing Mineral. Met. Mater. 15 753

    Google Scholar Pub Med

    Withanawasam L, Zhang Y J and Hadjipanayis G C 1991 J. Appl. Phys. 70 6450

    Google Scholar Pub Med

    Fan GJ, LöserW, Roth S, Eckert J and Schultz L 1991 Appl. Phys. Lett. 75 2984

    Google Scholar Pub Med

    Herbst J F, Fuerst C D, Mishra R K, Murphy C B and Wingerden D J V 1991 J. Appl. Phys. 69 5823

    Google Scholar Pub Med

    Munan Y, Shuwei Z, Yaojun L, Chunming W, Jiajie L and Bin Y 2018 Mater. Res. Express 6 026534

    Google Scholar Pub Med

    Wang Z, Zhang M, Zhou S, Qiao Y andWang R 2000 J. Alloys Compd. 309 212

    Google Scholar Pub Med

    Salazar D, Martín-Cid A, Madugundo R, Garitaonandia J S, Barandiaran J M and Hadjipanayis G C 2006 J. Appl. Phys D: Appl. Phys. 50 015305

    Google Scholar Pub Med

    Yang B, Shen B G, Zhao T Y and Sun J R 2007 Mater. Sci. Eng: B 145 11

    Google Scholar Pub Med

    Hirosawa S, Shigemoto Y, Miyoshi T and Kanekiyo H 2003 Scr. Mater. 48 839

    Google Scholar Pub Med

    Hono K, Ping D H, Ohnuma M and Onodera H 1991 Acta Mater. 47 997

    Google Scholar Pub Med

    Ping D H, Hono K, Kanekiyo H and Hirosawa S 1991 Acta Mater. 47 4641

    Google Scholar Pub Med

    Patterson A L 1939 Phys. Rev. 56 978

    Google Scholar Pub Med

    Suárez G M, Garcıa J I E, Cuevas J L, Gutiérrez G V, Molinar H M and Nonell J M 1999 J. Magn. Magn. Mater. 206 37

    Google Scholar Pub Med

    Hirosawa S, Kanekiyo H, Shigemoto Y, Murakami K, Miyoshi T and Shioya Y 2002 J. Magn. Magn. Mater. 239 424

    Google Scholar Pub Med

    Wang Z, Zhou S, Zhang M, Qiao Y and Wang R 1999 J. Appl. Phys. 86 7010

    Google Scholar Pub Med

    Li A H, Chiu C H, Chnag H W, Chang W C and Li W 2007 J. Alloys Compd. 437 197

    Google Scholar Pub Med

    Alam M K, Raza S, Han G B and Kang S S 2023 Phys. Status Solidi (a) 220 2200656

    Google Scholar Pub Med

    Wang L, Wang J, Rong M, Rao G and Zhou H 2018 J. Rare Earths 36 1179

    Google Scholar Pub Med

    Poenaru I, Lixandru A, Riegg S, Fayyazi B, Taubel A, Güth K, Gauß R and Gutfleisch O 2019 J. Magn. Magn. Mater. 478 198

    Google Scholar Pub Med

    Alam M K, Han G B and Kang S S 2020 Rare Metals 39 41

    Google Scholar Pub Med

    Herbst J F, Fuerst C D, Mishra R K, Murphy C B and Wingerden D J V 1991 J. Appl. Phys. 69 5823

    Google Scholar Pub Med

    Goll D, Seeger M and Kronmüller H 1998 J. Magn. Magn. Mater. 185 49

    Google Scholar Pub Med

    Panagiotopoulos I, Withanawasam L and Hadjipanayis G C 1996 J. Magn. Magn. Mater. 152 353

    Google Scholar Pub Med

    Alam M K, Raza S, Han G B and Kang 2024 Phys. Status Solidi (a) 221 2300626

    Google Scholar Pub Med

    Zhang Y, Li W, Li H and Zhang X 2013 J. Phys. D: Appl. Phys. 47 015002

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(212) PDF downloads(2) Cited by(0)

Access History

Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max

Fund Project: 

Abstract: The melt-spun ribbons of nominal composition Pr$_{9}$Fe$_{84.2-x}$B$_{6.2}$P$_{0.3}$Zr$_{0.3}$Cu$_{x}$ ($x=0$, 0.5, 1, 2) were prepared at wheel speeds of 21 m$\cdot$s$^{-1}$, 27 m$\cdot$s$^{-1}$, 30 m$\cdot$s$^{-1}$, and 33 m$\cdot$s$^{-1}$. The XRD patterns show that as the wheel speed increases, the crystallinity of the 2:14:1 hard phase decreases, while that of the $\alpha $-Fe soft phase increases. The $(BH)_{\rm max}$, remanence, and coercivity are improved from 63 kJ$\cdot$m$^{-3}$, 0.85 T, and 515 kA$\cdot$m$^{-1}$ for the Cu-free ribbons to 171 kJ$\cdot$m$^{-3}$, 1.08 T, and 684 kA$\cdot$m$^{-1}$ with $x=0.5$. The high squareness ratio of $J_{\rm r}/J_{\rm s} \sim 0.82$ at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$) indicates strong exchange coupling due to small grain sizes of 15 nm and 30 nm for soft and hard magnetic phases, respectively. The SEM images revealed smooth morphology and uniform element distribution at 0.5 at.% Cu (27 m$\cdot$s$^{-1}$), contributing to the high magnetic properties. The low recoil permeability ($\mu_{\rm rec}$) value of $5.466\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ to $1.970\times {10}^{-4}$ T/kA$\cdot$m$^{-1}$ confirms the strong exchange coupling with $x=0.5$ (27 m$\cdot$s$^{-1}$). The initial magnetization curves show that the coercivity mechanism of the Cu-free alloy evolves from the nucleation of the reverse domain to the domain wall pinning as the wheel speed increases, resulting in a high coercivity value of 818 kA$\cdot$m$^{-1}$ (33 m$\cdot$s$^{-1}$). Conversely, for the Cu-added alloy, the coercivity mechanism changes from pinning to the nucleation of the reverse domain from low to high wheel speed.

Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return