2025 Volume 34 Issue 1
Article Contents

Yuan Cao(曹原), Xiaosong Yu(郁小松), Yongli Zhao(赵永利), Chunhui Zhang(张春辉), Xingyu Zhou(周星宇), Jie Zhang(张杰), and Qin Wang(王琴). 2025: Multi-protocol relay chaining for large-scale quantum key distribution networks, Chinese Physics B, 34(1): 010310. doi: 10.1088/1674-1056/ad9018
Citation: Yuan Cao(曹原), Xiaosong Yu(郁小松), Yongli Zhao(赵永利), Chunhui Zhang(张春辉), Xingyu Zhou(周星宇), Jie Zhang(张杰), and Qin Wang(王琴). 2025: Multi-protocol relay chaining for large-scale quantum key distribution networks, Chinese Physics B, 34(1): 010310. doi: 10.1088/1674-1056/ad9018

Multi-protocol relay chaining for large-scale quantum key distribution networks

  • Received Date: 27/09/2024
    Accepted Date: 06/11/2024
  • Fund Project:

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62201276, 62350001, U22B2026, and 62471248), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300701), the Key R&D Program (Industry Foresight and Key Core Technologies) of Jiangsu Province (Grant No. BE2022071), and Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 22KJB510007).

  • As the first stage of the quantum Internet, quantum key distribution (QKD) networks hold the promise of providing long-term security for diverse users. Most existing QKD networks have been constructed based on independent QKD protocols, and they commonly rely on the deployment of single-protocol trusted relay chains for long reach. Driven by the evolution of QKD protocols, large-scale QKD networking is expected to migrate from a single-protocol to a multi-protocol paradigm, during which some useful evolutionary elements for the later stages of the quantum Internet may be incorporated. In this work, we delve into a pivotal technique for large-scale QKD networking, namely, multi-protocol relay chaining. A multi-protocol relay chain is established by connecting a set of trusted/untrusted relays relying on multiple QKD protocols between a pair of QKD nodes. The structures of diverse multi-protocol relay chains are described, based on which the associated model is formulated and the policies are defined for the deployment of multi-protocol relay chains. Furthermore, we propose three multi-protocol relay chaining heuristics. Numerical simulations indicate that the designed heuristics can effectively reduce the number of trusted relays deployed and enhance the average security level versus the commonly used single-protocol trusted relay chaining methods on backbone network topologies.
  • 加载中
  • Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505

    Google Scholar Pub Med

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460

    Google Scholar Pub Med

    Diamanti E, Lo H K, Qi B and Yuan Z 2016 npj Quantum Inf. 2 16025

    Google Scholar Pub Med

    Xu F, Ma X, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002

    Google Scholar Pub Med

    Diffie W and Hellman M 1976 IEEE Trans. Inf. Theory 22 644

    Google Scholar Pub Med

    Cao Y, Zhao Y, Wang Q, Zhang J, Ng S X and Hanzo L 2022 IEEE Commun. Surv. Tutorials 24 839

    Google Scholar Pub Med

    Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X, Zhang Q, Chen T Y and Pan J W 2016 Phys. Rev. X 6 011024

    Google Scholar Pub Med

    Huang D, Huang P, Li H, Wang T, Zhou Y and Zeng G 2016 Opt. Lett. 41 3511

    Google Scholar Pub Med

    Aguado A, López V, López D, Peev M, Poppe A, Pastor A, Folgueira J and Martín V 2019 IEEE Commun. Mag. 57 20

    Google Scholar Pub Med

    Tessinari R S, Bravalheri A, Hugues-Salas E, Collins R, Aktas D, Guimaraes R S, Alia O, Rarity J, Kanellos G T, Nejabati R and Simeonidou D 2019 45th European Conference on Optical Communication (ECOC 2019)

    Google Scholar Pub Med

    Dynes J F, Wonfor A, Tam W W S, Sharpe A W, Takahashi R, Lucamarini M, Plews A, Yuan Z L, Dixon A R, Cho J, Tanizawa Y, Elbers J P, Greiæer H, White I H, Penty R V and Shields A J 2019 npj Quantum Inf. 5 101

    Google Scholar Pub Med

    Joshi S K, Aktas D,Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Z, Kling L, Qiu A, Razavi M, Stipčević M, Rarity J G and Ursin R 2020 Sci. Adv. 6 eaba0959

    Google Scholar Pub Med

    Chen T Y, Jiang X, Tang S B, et al. 2021 npj Quantum Inf. 7 134

    Google Scholar Pub Med

    Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739

    Google Scholar Pub Med

    Wonfor A, White C, Bahrami A, Pearse J, Duan G, Straw A, Edwards T, Spiller T, Penty R and Lord A 2019 45th European Conference on Optical Communication (ECOC 2019)

    Google Scholar Pub Med

    Zhang Q, Xu F, Li L, Liu N L and Pan JW2019 Quantum Sci. Technol. 4 040503

    Google Scholar Pub Med

    Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214

    Google Scholar Pub Med

    Li Z D, Zhang R, Yin X F, Liu L Z, Hu Y, Fang Y Q, Fei Y Y, Jiang X, Zhang J, Li L, Liu N L, Xu F, Chen Y A and Pan J W 2019 Nat. Photon. 13 644

    Google Scholar Pub Med

    Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41

    Google Scholar Pub Med

    Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503

    Google Scholar Pub Med

    Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400

    Google Scholar Pub Med

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    Google Scholar Pub Med

    Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557

    Google Scholar Pub Med

    Wang S, Yin Z Q, He D Y, ChenW,Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154

    Google Scholar Pub Med

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q and Pan J W 2023 Phys. Rev. Lett. 130 210801

    Google Scholar Pub Med

    Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288

    Google Scholar Pub Med

    Cao Y, Zhao Y,Wang J, Yu X, Ma Z and Zhang J 2019 J. Opt. Commun. Netw. 11 285

    Google Scholar Pub Med

    Cao Y, Zhao Y, Li J, Lin R, Zhang J and Chen J 2021 IEEE J. Sel. Areas Commun. 39 2701

    Google Scholar Pub Med

    Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. p. 175

    Google Scholar Pub Med

    Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902

    Google Scholar Pub Med

    Stucki D, Brunner N, Gisin N, Scarani V and Zbinden H 2005 Appl. Phys. Lett. 87 194108

    Google Scholar Pub Med

    Pan D, Long G L, Yin L, Sheng Y B, Ruan D, Ng S X, Lu J and Hanzo L 2024 IEEE Commun. Surv. Tutorials 26 1898

    Google Scholar Pub Med

    Pan D, Lin Z, Wu J, Zhang H, Sun Z, Ruan D, Yin L and Long G L 2020 Photon. Research 8 1522

    Google Scholar Pub Med

    Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C and Han Z F 2021 Photon. Res. 9 1881

    Google Scholar Pub Med

    Guccione G, Darras T, Jeannic H L, Verma V B, Nam S W, Cavailles A and Laurat J 2020 Sci. Adv. 6 eaba4508

    Google Scholar Pub Med

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q and Pan J W 2021 Nat. Photon. 8 570

    Google Scholar Pub Med

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501

    Google Scholar Pub Med

    Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501

    Google Scholar Pub Med

    Zhao Y, Cao Y, Wang W, Wang H, Yu X, Zhang J, Tornatore M, Wu Y and Mukherjee B 2018 IEEE Commun. Mag. 56 130

    Google Scholar Pub Med

    Cao Y, Zhao Y, Wang J, Yu X, Ma Z and Zhang J 2019 IEEE Commun. Mag. 57 152

    Google Scholar Pub Med

    Wang R, Tessinari R S, Hugues-Salas E, Bravalheri A, Uniyal N, Muqaddas A S, Guimaraes R S, Diallo T, Moazzeni S, Wang Q, Kanellos G T, Nejabati R and Simeonidou D 2020 J. Lightwave Technol. 38 139

    Google Scholar Pub Med

    Niu J, Sun Y, Jia X and Ji Y 2021 J. Lightwave Technol. 39 2661

    Google Scholar Pub Med

    Moghaddam E E, Beyranvand H and Salehi J A 2021 IEEE J. Sel. Areas Commun. 39 2688

    Google Scholar Pub Med

    2019 Overview on Networks Supporting Quantum Key Distribution ITU-T Y.3800

    Google Scholar Pub Med

    Wang W, Xu F and Lo H K 2019 Phys. Rev. X 9 041012

    Google Scholar Pub Med

    Zhou X Y, Zhang C H, Zhang C M and Wang Q 2019 Phys. Rev. A 99 062316

    Google Scholar Pub Med

    Wang X B 2013 Phys. Rev. A 87 012320

    Google Scholar Pub Med

    Wang Q and Wang X B 2013 Phys. Rev. A 88 052332

    Google Scholar Pub Med

    Shannon C E 1949 Bell Labs Tech. J. 28 656

    Google Scholar Pub Med

    2020 Quantum Key Distribution Networks - Key Management ITU-T Y.3803

    Google Scholar Pub Med

    Aleksic S, Hipp F, Winkler D, Poppe A, Schrenk B and Franzl G 2015 Opt. Express 23 10359

    Google Scholar Pub Med

    Mao Y, Wang B X, Zhao C, Wang G, Wang R, Wang H, Zhou F, Nie J, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y and Pan J W 2018 Opt. Express 26 6010

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(178) PDF downloads(3) Cited by(0)

Access History

Multi-protocol relay chaining for large-scale quantum key distribution networks

Fund Project: 

Abstract: As the first stage of the quantum Internet, quantum key distribution (QKD) networks hold the promise of providing long-term security for diverse users. Most existing QKD networks have been constructed based on independent QKD protocols, and they commonly rely on the deployment of single-protocol trusted relay chains for long reach. Driven by the evolution of QKD protocols, large-scale QKD networking is expected to migrate from a single-protocol to a multi-protocol paradigm, during which some useful evolutionary elements for the later stages of the quantum Internet may be incorporated. In this work, we delve into a pivotal technique for large-scale QKD networking, namely, multi-protocol relay chaining. A multi-protocol relay chain is established by connecting a set of trusted/untrusted relays relying on multiple QKD protocols between a pair of QKD nodes. The structures of diverse multi-protocol relay chains are described, based on which the associated model is formulated and the policies are defined for the deployment of multi-protocol relay chains. Furthermore, we propose three multi-protocol relay chaining heuristics. Numerical simulations indicate that the designed heuristics can effectively reduce the number of trusted relays deployed and enhance the average security level versus the commonly used single-protocol trusted relay chaining methods on backbone network topologies.

Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return