2025 Volume 34 Issue 1
Article Contents

Luyao Huang(黄璐瑶), Cheng Ling(凌澄), Limin Zhou(周利民), Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Lijuan Zhang(张立娟), Phornphimon Maitarad, Dengsong Zhang(张登松), and Chunlei Wang(王春雷). 2025: Stable nanobubbles on ordered water monolayer near ionic model surfaces, Chinese Physics B, 34(1): 014701. doi: 10.1088/1674-1056/ad989d
Citation: Luyao Huang(黄璐瑶), Cheng Ling(凌澄), Limin Zhou(周利民), Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Lijuan Zhang(张立娟), Phornphimon Maitarad, Dengsong Zhang(张登松), and Chunlei Wang(王春雷). 2025: Stable nanobubbles on ordered water monolayer near ionic model surfaces, Chinese Physics B, 34(1): 014701. doi: 10.1088/1674-1056/ad989d

Stable nanobubbles on ordered water monolayer near ionic model surfaces

  • Corresponding author: Phornphimon Maitarad ; 
  • Received Date: 18/09/2024
    Accepted Date: 28/10/2024
  • Fund Project:

    This study was supported by the National Natural Science Foundation of China (Grant Nos. 12022508, 12074394, and 22125604), Shanghai Supercomputer Center of China, and Shanghai Snowlake Technology Co. Ltd.

  • The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry. However, the state of nanobubbles on mineral solid surfaces is still elusive. In this study, molecular dynamics (MD) simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity, modulated by surface charges, to elucidate the adsorption behavior of nanobubbles at the interface. Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry. We observed that as the surface charge increases, the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape, and ultimately forming a stable nanobubble upon an ordered water monolayer. When the solid-water interactions are weak with a small partial charge, the hydrophobic gas (N$_{2}$) molecules accumulate near the solid surfaces. However, we have found, for the first time, that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges. Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.
  • 加载中
  • Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377

    Google Scholar Pub Med

    Temesgen T, Bui T T, Han M, Kim T I and Park H 2017 Adv. Colloid Interface Sci. 246 40

    Google Scholar Pub Med

    Yang X, Yang Q, Zhou L, Zhang L and Hu J 2022 Chin. Phys. B 31 054702

    Google Scholar Pub Med

    Wen B, Pan Y, Zhang L,Wang S, Zhou L,Wang C and Hu J 2022 Phys. Rev. Fluids 7 103601

    Google Scholar Pub Med

    Zhang L, Zhang Y, Zhang X, Li Z, Shen G, Ye M, Fan C, Fang H and Hu J 2006 Langmuir 22 8109

    Google Scholar Pub Med

    Chen Q, Wiedenroth H S, German S R and White H S 2015 J. Am. Chem. Soc. 137 12064

    Google Scholar Pub Med

    Lu D 2024 The Innovation 5 100646

    Google Scholar Pub Med

    Vogt H and Balzer R J 2005 Electrochim. Acta 50 2073

    Google Scholar Pub Med

    Angulo A, van der Linde P, Gardeniers H, ModestinoMand Fernández Rivas D 2020 Joule 4 555

    Google Scholar Pub Med

    Zhao X, Ren H and Luo L 2019 Langmuir 35 5392

    Google Scholar Pub Med

    Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K and Jaramillo T F 2017 Science 355 eaad4998

    Google Scholar Pub Med

    Ma Y, Guo Z, Chen Q and Zhang X 2021 Langmuir 37 2771

    Google Scholar Pub Med

    Chen Q, Zhao J, Deng X, Shan Y and Peng Y 2022 J. Phys. Chem. Lett. 13 6153

    Google Scholar Pub Med

    Marion C, Li R and Waters K E 2020 Adv. Colloid Interface Sci. 279 102142

    Google Scholar Pub Med

    Ren L, Zhang Z, Zeng W and Zhang Y 2023 Int. J. Min. Sci. Technol. 33 503

    Google Scholar Pub Med

    Zhao Y, Jia J, Liu C and Feng X 2024 The Innovation 5 100576

    Google Scholar Pub Med

    Li H, Fang W, Wang L X, Liu Y, Liu L, Sun T, Liao C, Zhu Y, Wang L and Xiao F S 2023 The Innovation 4 100445

    Google Scholar Pub Med

    Xiang M, Shen Z, Zheng J, Song M, He Q, Yang Y, Zhu J, Geng Y, Yue F, Dong Q, Ge Y, Wang R, Wei J, Wang W, Huang H, Zhang H, Zhu Q and Zhang C J 2024 The Innovation 5 100540

    Google Scholar Pub Med

    Zhang W, Shao Y, Zou X, Yan J, Xu M, Zhou G and Fu S 2024 The Innovation 5 100642

    Google Scholar Pub Med

    Sobhy A and Tao D 2013 Int. J. Miner. Process. 124 109

    Google Scholar Pub Med

    Wang Y, Pan Z, Luo X, Qin W and Jiao F 2019 Miner. Eng. 133 127

    Google Scholar Pub Med

    Zhou W, Chen H, Ou L and Shi Q 2016 Int. J. Miner. Process. 157 236

    Google Scholar Pub Med

    Zhang N, Pang T, Han R, Chen S, Li Z, Yu Y, Shi Z, Liu L, Qu J and Zhou A 2022 Int. J. Min. Sci. Technol. 32 201

    Google Scholar Pub Med

    Alheshibri M, Al Baroot A, Shui L and Zhang M 2021 Curr. Opin. Colloid Interface Sci. 55 101470

    Google Scholar Pub Med

    Zhang L, Zhang X, Zhang Y, Hu J and Fang H 2010 Soft Matter 6 4515

    Google Scholar Pub Med

    Maheshwari S, van der Hoef M, Zhang X and Lohse D 2016 Langmuir 32 11116

    Google Scholar Pub Med

    Perez Sirkin Y A, Gadea E D, Scherlis D A and Molinero V 2019 J. Am. Chem. Soc. 141 10801

    Google Scholar Pub Med

    Zhang F, Cai H, Fan G, Gui X, Xing Y and Cao Y 2024 Colloids Surf. A 699 134633

    Google Scholar Pub Med

    Zhang L, Chen H, Li Z, Fang H and Hu J 2008 Sci. China Phys. Mech. 51 219

    Google Scholar Pub Med

    Weijs J H and Lohse D 2013 Phys. Rev. Lett. 110 054501

    Google Scholar Pub Med

    Wang C L, Li Z X, Li J Y, Xiu P, Hu J and Fang H P 2008 Chin. Phys. B 17 2646

    Google Scholar Pub Med

    Wang Z, Yang L, Liu C and Lin S 2023 Chin. Phys. B 32 023101

    Google Scholar Pub Med

    Zhou L, Wang X, Shin H J, Wang J, Tai R, Zhang X, Fang H, Xiao W, Wang L, Wang C, Gao X, Hu J and Zhang L 2020 J. Am. Chem. Soc. 142 5583

    Google Scholar Pub Med

    Gao Z, Wu W, Sun W and Wang B 2021 Langmuir 37 11281

    Google Scholar Pub Med

    Hu K, Luo L, Sun X and Li H 2022 Nanoscale Adv. 4 2893

    Google Scholar Pub Med

    Yen T H, Lin C H and Chen Y L 2021 Langmuir 37 2759

    Google Scholar Pub Med

    Maheshwari S, van der Hoef M, Rodríguez Rodríguez J and Lohse D 2018 ACS Nano 12 2603

    Google Scholar Pub Med

    Lan L, Pan Y, Zhou L, Kuang H, Zhang L and Wen B 2025 J. Colloid Interface Sci. 678 322

    Google Scholar Pub Med

    Lei J, Huang D, Zhao W, Liu S and Yue Y 2024 Int. J. Heat Mass Transfer 225 125407

    Google Scholar Pub Med

    Zhang P, Chen C, Feng M, Sun C and Xu X 2024 J. Am. Chem. Soc. 146 19537

    Google Scholar Pub Med

    Desgranges C and Delhommelle J 2019 J. Phys. Chem. C 123 11707

    Google Scholar Pub Med

    Attard P 2003 Adv. Colloid Interface Sci. 104 75

    Google Scholar Pub Med

    Qu M, Huang G, Liu X, Nie X, Qi C, Wang H, Hu J, Fang H, Gao Y, Liu W T, Francisco J S and Wang C 2022 Chem. Sci. 13 10546

    Google Scholar Pub Med

    Zhao Z, Park J, Choi C, Hong S, Hui X, Zhang H, Benedict Lo T W, Robertson AW, Lv Z, Jung Y and Sun Z 2022 The Innovation 3 100190

    Google Scholar Pub Med

    Hou L, Liu X, Ge X, Hu R, Cui Z, Wang N and Zhao Y 2023 The Innovation 4 100508

    Google Scholar Pub Med

    Wang S, Tang L and Tao X 2018 Fuel 212 326

    Google Scholar Pub Med

    Chang Z, Chen X and Peng Y 2017 Powder Technol. 321 190

    Google Scholar Pub Med

    Abel M, Clair S, Ourdjini O, Mossoyan M and Porte L 2011 J. Am. Chem. Soc. 133 1203

    Google Scholar Pub Med

    Yuan Q and Zhao Y P 2010 Phys. Rev. Lett. 104 246101

    Google Scholar Pub Med

    Phan A, Ho T A, Cole D R and Striolo A 2012 J. Phys. Chem. C 116 15962

    Google Scholar Pub Med

    Lützenkirchen J, Zimmermann R, Preočanin T, Filby A, Kupcik T, Küttner D, Abdelmonem A, Schild D, Rabung T, Plaschke M, Brandenstein F, Werner C and Geckeis H 2010 Adv. Colloid Interface Sci. 157 61

    Google Scholar Pub Med

    Lee K, Kim Q, An S, An J, Kim J, Kim B and Jhe W 2014 Proc. Natl. Acad. Sci. USA 111 5784

    Google Scholar Pub Med

    Zhang J, Tan J, Pei R, Ye S and Luo Y 2021 J. Am. Chem. Soc. 143 13074

    Google Scholar Pub Med

    Wang Y H, Zheng S, Yang W M, Zhou R Y, He Q F, Radjenovic P, Dong J C, Li S, Zheng J, Yang Z L, Attard G, Pan F, Tian Z Q and Li J F 2021 Nature 600 81

    Google Scholar Pub Med

    Shen L, Wang C, Min F, Liu L and Xue C 2020 Fuel 271 117557

    Google Scholar Pub Med

    Xia W 2017 Int. J. Miner. Process. 168 19

    Google Scholar Pub Med

    Chen Y, Xia W and Xie G 2018 Fuel 222 35

    Google Scholar Pub Med

    Gao L X, Li X G, Lyu X J and Zhu X N 2024 Energy Fuels 38 1566

    Google Scholar Pub Med

    Xia Y, Zhang R, Cao Y, Xing Y and Gui X 2020 Fuel 262 116535

    Google Scholar Pub Med

    Li M, Xing Y, Zhu C, Liu Q, Yang Z, Zhang R, Zhang Y, Xia Y and Gui X 2022 Int. J. Min. Sci. Technol. 32 1389

    Google Scholar Pub Med

    Li B, Su D, Che D, Zhang L, Liu S and Albijanic B 2024 Miner. Eng. 209 108610

    Google Scholar Pub Med

    Xia Y, Zhang R, Xing Y and Gui X 2019 Fuel 235 687

    Google Scholar Pub Med

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1 19

    Google Scholar Pub Med

    Wang C, Lu H, Wang Z, Xiu P, Zhou B, Zuo G, Wan R, Hu J and Fang H 2009 Phys. Rev. Lett. 103 137801

    Google Scholar Pub Med

    Wang S, Zhou L,Wang X,Wang C, Dong Y, Zhang Y, Gao Y, Zhang L and Hu J 2019 Langmuir 35 2498

    Google Scholar Pub Med

    Wang S, Hou K and Heinz H 2021 J. Chem. Theory Comput. 17 5198

    Google Scholar Pub Med

    Vernov A V and Steele W A 1986 Langmuir 2 219

    Google Scholar Pub Med

    Scocchi G, Sergi D, D’Angelo C and Ortona A 2011 Phys. Rev. E 84 061602

    Google Scholar Pub Med

    Niwano M, Ma T, Iwata K, Tadaki D, Yamamoto H, Kimura Y and Hirano-Iwata A 2023 J. Colloid Interface Sci. 652 1775

    Google Scholar Pub Med

    Li C,Wang S P, Zhang AMand Liu Y 2018 Phys. Rev. Fluids 3 123604

    Google Scholar Pub Med

    Yang H, Jiang H, Cheng Y, Xing Y, Cao Y and Gui X 2024 J. Mol. Liq. 411 125758

    Google Scholar Pub Med

    Varghese B and Sathian S P 2022 Phys. Chem. Chem. Phys 24 22298

    Google Scholar Pub Med

    Weijs J H, Snoeijer J H and Lohse D 2012 Phys. Rev. Lett. 108 104501

    Google Scholar Pub Med

    Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505

    Google Scholar Pub Med

    Qi C, Ling C and Wang C 2023 Crystals 13 263

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(175) PDF downloads(2) Cited by(0)

Access History

Stable nanobubbles on ordered water monolayer near ionic model surfaces

    Corresponding author: Phornphimon Maitarad ; 
Fund Project: 

Abstract: The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry. However, the state of nanobubbles on mineral solid surfaces is still elusive. In this study, molecular dynamics (MD) simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity, modulated by surface charges, to elucidate the adsorption behavior of nanobubbles at the interface. Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry. We observed that as the surface charge increases, the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape, and ultimately forming a stable nanobubble upon an ordered water monolayer. When the solid-water interactions are weak with a small partial charge, the hydrophobic gas (N$_{2}$) molecules accumulate near the solid surfaces. However, we have found, for the first time, that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges. Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.

Reference (75)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return