2025 Volume 34 Issue 1
Article Contents

Wentao Yu(于文韬), Long Zhao(赵龙), Yanfei Gao(高延飞), Shiping Gao(高石平), Yuekun Yang(杨悦昆), Chen Pan(潘晨), Shi-Jun Liang(梁世军), and Bin Cheng(程斌). 2025: Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor, Chinese Physics B, 34(1): 018502. doi: 10.1088/1674-1056/ad9c44
Citation: Wentao Yu(于文韬), Long Zhao(赵龙), Yanfei Gao(高延飞), Shiping Gao(高石平), Yuekun Yang(杨悦昆), Chen Pan(潘晨), Shi-Jun Liang(梁世军), and Bin Cheng(程斌). 2025: Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor, Chinese Physics B, 34(1): 018502. doi: 10.1088/1674-1056/ad9c44

Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor

  • Received Date: 12/11/2024
    Accepted Date: 04/12/2024
    Available Online: 20/01/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62375131, 62204119, 62122036, and 62304104), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220947), and the Funding of NJUST (Grant No. TSXK2022D008).

  • Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision. These devices exhibit inherent switchable positive and negative photovoltaic properties that effectively mimic the behavior of human retinal cells. However, the photovoltaic responsivity of most electrically tunable homojunctions remains significantly low due to the weak light absorption, making it challenging to meet the application requirements for high-sensitivity target detection in the field of intelligent vision. Here, we propose a gate-tunable photodiode based on two-dimensional ambipolar WSe$_{2}$ with an asymmetric gate electrode, achieving high photovoltaic responsivity. By adjusting the gate voltage and keeping bias voltage zero, we can dynamically realize reconfigurable n$^-$-p and n$^-$-n homojunction states, as well as gate-tunable photovoltaic response characteristics that range from positive to negative. The maximum photovoltaic responsivity of the electrically tunable WSe$_{2}$ homojunction is approximately 0.4 A/W, which is significantly larger than the previously reported value $\sim 0.1 $ A/W in homojunction devices. In addition, the responsivity can be further enhanced to approximately 1.0 A/W when the n$^-$-p photodiode operates in reverse bias mode, enabling high-sensitivity detection of targets. Our work paves the way for developing gate-tunable photodiodes with high photovoltaic responsivity and advancing high-performance intelligent vision technology.

  • 加载中
  • Wang S, Wang C Y, Wang P F, Wang C, Li Z A, Pan C, Dai Y T, Gao A Y, Liu C, Liu J, Yang H F, Liu X W, Cheng B, Cheng K J, Wang Z L,Watanabe K, Taniguchi T, Liang S J and Miao F 2021 Natl. Sci. Rev. 8 nwaa172

    Google Scholar Pub Med

    Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S and Ye L 2024 Nat. Commun. 15 8650

    Google Scholar Pub Med

    Zhang Z, Wang S, Liu C, Xie R, Hu W and Zhou P 2021 Nat. Nanotechnol. 17 27

    Google Scholar Pub Med

    Shang H, Hu Y, Gao F, Dai M, Zhang S, Wang S, Ouyang D, Li X, Song X, Gao B, Zhai T and Hu P 2022 ACS Nano 16 21293

    Google Scholar Pub Med

    Pan X, Shi J W, Wang P F, Wang S, Pan C, Yu W T, Cheng B, Liang S J and Miao F 2023 Sci. Adv. 9 eadi4083

    Google Scholar Pub Med

    Yang Y, Pan C, Li Y, Yangdong X,Wang P, Li Z A,Wang S, YuW, Liu G, Cheng B, Di Z, Liang S J and Miao F 2024 Nat. Electron. 7 225

    Google Scholar Pub Med

    Dang Z Y, Guo F, Wang Z Q, Jie W J, Jin K, Chai Y and Hao J H 2024 ACS Nano 18 27727

    Google Scholar Pub Med

    Cai Y C, Wang F, Wang X M, Li S H, Wang Y R, Yang J, Yan T, Zhan X Y, Wang F M, Cheng R Q, He J and Wang Z X 2023 Adv. Funct. Mater. 33 2212917

    Google Scholar Pub Med

    Zeng S, Liu C, Huang X, Tang Z, Liu L and Zhou P 2022 Nat. Commun. 13 56

    Google Scholar Pub Med

    Feng G, Zhang X, Tian B and Duan C 2023 InfoMat 5 e12473

    Google Scholar Pub Med

    Yang Y, Zhao J, Liu Y, Hua X, Wang T, Zheng J, Hao Z, Xiong B, Sun C, Han Y, Wang J, Li H, Wang L and Luo Y 2024 Chin. Phys. B 33 030702

    Google Scholar Pub Med

    Wang H, Song X, Li Z, Li D, Xu X, Chen Y, Liu P, Zhou X and Zhai T 2024 J. Semicond. 45 051701

    Google Scholar Pub Med

    Wang C Y, Liang S J, Wang S, et al. 2020 Sci. Adv. 6 eaba6173

    Google Scholar Pub Med

    Liao F, Zhou Z, Kim B J, Chen J, Wang J, Wan T, Zhou Y, Hoang A T, Wang C, Kang J, Ahn J H and Chai Y 2022 Nat. Electron. 5 84

    Google Scholar Pub Med

    Zhou Y, Fu J W, Chen Z R, Zhuge F W, Wang Y S, Yan J M, Ma S J, Xu L, Yuan H M, Chan M S, Miao X S, He Y H and Chai Y 2023 Nat. Electron. 6 870

    Google Scholar Pub Med

    Jin H, Park C, Byun H H, Park S H and Choi S Y 2023 ACS Photonics 10 3027

    Google Scholar Pub Med

    Masanta S, Nayak C, Agarwal P, Das K and Singha A 2023 ACS Appl. Mater. Interfaces 15 14523

    Google Scholar Pub Med

    Liu F, Lin X, Yan Y T, Gan X T, Cheng Y C and Luo X G 2023 Nano Lett. 23 11645

    Google Scholar Pub Med

    Yang Y K, Wang X D, Wang C, Song Y X, Zhang M, Xue Z Y, Wang S M, Zhu Z Y S, Liu G Y, Li P L, Dong L X, Mei Y F, Chu W D, Hu J L, Wang and Di Z F 2020 Nano Lett. 20 3872

    Google Scholar Pub Med

    Mak K F and Shan J 2016 Nat. Photon. 10 216

    Google Scholar Pub Med

    Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett 105 136805

    Google Scholar Pub Med

    Xie C, Mak C, Tao XMand Yan F 2017 Adv. Funct. Mater. 27 1603886

    Google Scholar Pub Med

    Jariwala D, Davoyan A R,Wong J and Atwater H A 2017 ACS Photonics 4 2962

    Google Scholar Pub Med

    Wei X, Yan F G, Lv Q S, Shen C and Wang K Y 2017 Nanoscale 9 8388

    Google Scholar Pub Med

    Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262

    Google Scholar Pub Med

    Pospischil A, FurchiMMand Mueller T 2014 Nat. Nanotechnol. 9 257

    Google Scholar Pub Med

    Zhao Y, Sun H, Sheng Z, Zhang W, Zhou P and Zhang Z 2023 Chin. Phys. B 32 128505

    Google Scholar Pub Med

    Resta G V, Balaji Y, Lin D, Radu I P, Catthoor F, Gaillardon P E and De Micheli G 2018 ACS Nano 12 7039

    Google Scholar Pub Med

    Wu P, Reis D, Hu X B S and Appenzeller J 2021 Nat. Electron. 4 45

    Google Scholar Pub Med

    Pan C, Wang C Y, Liang S J, Wang Y, Cao T J, Wang P F, Wang C, Wang S, Cheng B, Gao A Y, Liu E F, Watanabe K, Taniguchi T and Miao F 2020 Nat. Electron. 3 383

    Google Scholar Pub Med

    Wu G J, Tian B B, Liu L, et al. 2020 Nat. Electron. 3 43

    Google Scholar Pub Med

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H and Xu X D 2014 Nat. Nanotechnol. 9 268

    Google Scholar Pub Med

    Liu T, Xiang D, Zheng Y, Wang Y A, Wang X Y, Wang L, He J, Liu L and Chen W 2018 Adv. Mater. 30 1804470

    Google Scholar Pub Med

    Li D, Chen M Y, Sun Z Z, Yu P, Liu Z, Ajayan P M and Zhang Z X 2017 Nat. Nanotechnol. 12 901

    Google Scholar Pub Med

    Wu G J, Zhang X M, Feng G D, Wang J L, Zhou K J, Zeng J H, Dong D N, Zhu F D, Yang C K, Zhao X M, Gong D N, Zhang M R, Tian B B, Duan C A, Liu Q, Wang J L, Chu J H and Liu M 2023 Nat. Mater. 22 1499

    Google Scholar Pub Med

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina- Mendoza A J and Mueller T 2020 Nature 579 62

    Google Scholar Pub Med

    Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M and Zhu Z M 2024 ACS Nano 18 29968

    Google Scholar Pub Med

    Gorbachev R V, Riaz I, Nair R R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K and Blake P 2011 Small 7 465

    Google Scholar Pub Med

    del Corro E, Terrones H, Elias A, Fantini C, Feng S M, Nguyen M A, Mallouk T E, Terrones M and Pimenta M A 2014 ACS Nano 8 9629

    Google Scholar Pub Med

    Xu J P, Luo X G, Hu S Q, Zhang X, Mei D, Liu F, Han N N, Liu D, Gan X T, Cheng Y C and Huang W 2021 Adv. Mater. 33 2008080

    Google Scholar Pub Med

    Buscema M, Island J O, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691

    Google Scholar Pub Med

    Liu C, Ma C J, Gong D W, Ma C J, Chen D X, Wu C C, Zhao M Z, Zhang Z B, Yun J M, Xiao F J, Wang E E, Liu K H and Hong H 2023 J. Phys. Chem. Lett. 14 5573

    Google Scholar Pub Med

    Zhou S R, Fan H D, Wen S F, Zhang R, Yin Y, Lan C Y, Li C and Liu Y 2024 Adv. Opt. Mater. 12 2301982

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(245) PDF downloads(1) Cited by(0)

Access History

Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor

Fund Project: 

Abstract: 

Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision. These devices exhibit inherent switchable positive and negative photovoltaic properties that effectively mimic the behavior of human retinal cells. However, the photovoltaic responsivity of most electrically tunable homojunctions remains significantly low due to the weak light absorption, making it challenging to meet the application requirements for high-sensitivity target detection in the field of intelligent vision. Here, we propose a gate-tunable photodiode based on two-dimensional ambipolar WSe$_{2}$ with an asymmetric gate electrode, achieving high photovoltaic responsivity. By adjusting the gate voltage and keeping bias voltage zero, we can dynamically realize reconfigurable n$^-$-p and n$^-$-n homojunction states, as well as gate-tunable photovoltaic response characteristics that range from positive to negative. The maximum photovoltaic responsivity of the electrically tunable WSe$_{2}$ homojunction is approximately 0.4 A/W, which is significantly larger than the previously reported value $\sim 0.1 $ A/W in homojunction devices. In addition, the responsivity can be further enhanced to approximately 1.0 A/W when the n$^-$-p photodiode operates in reverse bias mode, enabling high-sensitivity detection of targets. Our work paves the way for developing gate-tunable photodiodes with high photovoltaic responsivity and advancing high-performance intelligent vision technology.

Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return