2025 Volume 34 Issue 4
Article Contents

Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. 2025: Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas, Chinese Physics B, 34(4): 045202. doi: 10.1088/1674-1056/adacce
Citation: Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. 2025: Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas, Chinese Physics B, 34(4): 045202. doi: 10.1088/1674-1056/adacce

Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas

  • Corresponding author: Muhammad Asif Shakoori ; 
  • Received Date: 25/11/2024
    Accepted Date: 13/01/2025
  • Fund Project:

    Haipeng Li acknowledges the support of the Fundamental Research Funds for the Central Universities of China (Grant No. 2019ZDPY16).

  • PACS: 52.27.Lw; 52.65.Yy; 66.10.Cg

  • We employ the Green-Kubo (G-K) and Einstein relations to estimate the self-diffusion coefficients (denoted as $D_{\rm G}$ and $D_{\rm E}$, respectively) in two-dimensional (2D) strongly coupled dusty plasmas (SC-DPs) via equilibrium molecular dynamics (EMD) simulations. $D_{\rm G}$ and $D_{\rm E}$ are computed for a broad domain of screening length ($\kappa$) and coupling parameters ($\varGamma$) along with different system sizes. It is observed that both $D_{\rm G}$ and $D_{\rm E}$ decrease linearly with increasing $\varGamma$ in warm liquid states and increase with increasing $\kappa$. In cold liquid states, the Einstein relation accurately predicts $D_{\rm E} $ in 2D SC-DPs because diffusion motion is close to normal diffusion, but the G-K relation provides overestimations of $D_{\rm G}$, because VACF indicates anomalous diffusion; thus, $D_{\rm G}$ is not accurate. Our new simulation outcomes reveal that $D_{\rm G}$ and $D_{\rm E}$ remain independent of system sizes. Furthermore, our investigations demonstrate that at higher temperatures, $D_{\rm G}$ and $D_{\rm E} $ converge, suggesting diffusion motion close to normal diffusion, while at lower temperatures, these two values diverge. We find reasonable agreement by comparing current and existing numerical, theoretical and experimental data. Moreover, when normalizing diffusion coefficients by the Einstein frequency and testing against the universal temperature scaling law, $D_{\rm G}$ deviates from theoretical curves at low temperatures and $\kappa$, whereas $D_{\rm E}$ only disagrees with theory at very small $\kappa$ ($\simeq 0.10$). These findings provide valuable insight into diagnosing dust component parameters within 2D DP systems and contribute to the broader understanding of diffusion processes in DP environments.
  • 加载中
  • Ivlev A, Lowen H, Morfill G and Royall C P 2012 Complex Plasmas and Colloidal Dispersions Particle-Resolved Studies of Classical Liquids and Solids (Singapore: World Scientific)

    Google Scholar Pub Med

    Grimes C C and Adams G 1979 Rev. Lett. 42 795

    Google Scholar Pub Med

    Gammel P L, Bishop G J, Kwo J R, et al. 1987 Phys. Rev. Lett. 59 2592

    Google Scholar Pub Med

    Murray C A, Sprenger W O and Wenk R A 1990 Phys. Rev. B 42 688

    Google Scholar Pub Med

    Mitchell T B, Bollinger J J, Huang X P, et al. 1999 Phys. Plasmas 6 1751

    Google Scholar Pub Med

    Fortov V E and Morfill G E 2009 Complex and Dusty Plasmas (CRC Press)

    Google Scholar Pub Med

    Shakoori M A, Rahim I, Khan M, et al. 2024 Phys. Scr. 100 2

    Google Scholar Pub Med

    Dietrich K, Renggli D, Zanini M, et al. 2017 New J. Phys. 19 065008

    Google Scholar Pub Med

    Beckers J, Berndt J, Block D, et al. 2023 Phys. Plasmas 30 120601

    Google Scholar Pub Med

    Nunomura S, Samsonov D, Zhdanov S and Morfill G 2006 Phys. Rev. Lett. 96 015003

    Google Scholar Pub Med

    Hartmann P, Reyes J C, Kostadinova E G, et al. 2019 Phys. Rev. E 99 013203

    Google Scholar Pub Med

    Vaulina O S and Vladimirov S V 2002 Phys. Plasmas 9 835

    Google Scholar Pub Med

    Vaulina O S, Vladimirov S V, Petrov O F and Fortov V E 2004 Phys. Plasmas 11 3234

    Google Scholar Pub Med

    Vaulina O S and Dranzhevski I E 2006 Phys. Scr. 73 577

    Google Scholar Pub Med

    Vaulina O S, Adamovich X G, Petrov O F and Fortov V E 2008 Phys. Rev. E 77 066403

    Google Scholar Pub Med

    Ohta H and Hamaguchi S 2000 Phys. Plasmas 7 4506

    Google Scholar Pub Med

    Daligault J 2012 Phys. Rev. Lett. 108 225004

    Google Scholar Pub Med

    Shakoori M A, He M and Shahzad A 2022 Eur. Phys. J. D 76 227

    Google Scholar Pub Med

    Löwen H, Hansen J P and Roux J N 1991 Phys. Rev. A 44 1169

    Google Scholar Pub Med

    Baalrud S D and Daligault J 2013 Phys. Rev. Lett. 110 235001

    Google Scholar Pub Med

    Baalrud S D and Daligault J 2015 Phys. Rev. E 91 063107

    Google Scholar Pub Med

    Khrapak S A, Vaulina O S and Morfill G E 2012 Phys. Plasmas 19 034503

    Google Scholar Pub Med

    Rosenfeld Y, Nardi E and Zinamon Z 1995 Phys. Rev. Lett. 75 2490

    Google Scholar Pub Med

    Daligault J 2006 Phys. Rev. Lett. 96 065003

    Google Scholar Pub Med

    Vieillefosse P and Hansen J P 1975 Phys. Rev. A 12 1106

    Google Scholar Pub Med

    Daligault J 2012 Phys. Rev. E 86 047401

    Google Scholar Pub Med

    Shakoori M A, He M G, Shahzad A and Khan M 2022 J. Mol. Model 28 398

    Google Scholar Pub Med

    Shakoori M A, He M G, Shahzad A and Khan M 2022 Plasma Phys. Reports 48 1023

    Google Scholar Pub Med

    Shakoori M A, He M G, Shahzad A, Khan M and Zhang Y 2021 Emerging Development and application of low temperature plasma (IGI Global) p. 63

    Google Scholar Pub Med

    Shakoori M A, He Maogang, Shahzad A and Khan M 2023 Phys. Scr. 98 015608

    Google Scholar Pub Med

    Begum M and Das N 2016 IOSR Journal of Applied Physics 8 49

    Google Scholar Pub Med

    Shakoori M A, He Maogang, Shahzad A, et al. 2022 Studies of Self Diffusion Coefficient in Electrorheological Complex Plasmas through Molecular Dynamics Simulations (Intech London)

    Google Scholar Pub Med

    Strickler T S, Langin T K, McQuillen P, Daligault J and Killian T C 2016 Phys. Rev. X 6 021021

    Google Scholar Pub Med

    Robbins M O, Kremer K and Grest G S 1988 J. Chem. Phys. 88 3286

    Google Scholar Pub Med

    Rosenfeld Y, Nardi E and Zinamon Z 1995 Phys. Rev. Lett. 75 2490

    Google Scholar Pub Med

    Daligault J 2006 Phys. Rev. Lett. 96 065003

    Google Scholar Pub Med

    Liu Y, Liu B, Yang S Z andWang L 2002 J. Phys. A Math Gen 35 9535

    Google Scholar Pub Med

    Liu B, Goree J and Vaulina O S 2006 Phys. Rev. Lett. 96 015005

    Google Scholar Pub Med

    Liu B and Goree J 2007 S Phys. Rev. E 75 016405

    Google Scholar Pub Med

    Liu B and Goree J 2008 Phys Rev. Lett. 100 055003

    Google Scholar Pub Med

    Liu B, Goree J and Feng Y 2008 Phys. Rev. E 78 046403

    Google Scholar Pub Med

    Liu B and Goree J 2014 Phys. Plasmas 21 063704

    Google Scholar Pub Med

    Hou L J, Piel A and Shukla P K 2009 Phys. Rev. Lett. 102 085002

    Google Scholar Pub Med

    Donkó Z, Goree J, Hartmann P and Liu B 2009 Phys. Rev. E 79 026401

    Google Scholar Pub Med

    Shahzad A and He M G 2012 Phys. Scr. 86 015502

    Google Scholar Pub Med

    Shahzad A, He M G and He K 2013 Phys. Scr. 87 035501

    Google Scholar Pub Med

    Ghannad Z and Hakimi Pajouh H 2017 Phys. Lett. A 381 3952

    Google Scholar Pub Med

    Ghannad Z 2019 Phys. Rev. E 100 033211

    Google Scholar Pub Med

    Ghannad Z 2021 Phys. Plasmas. 28 043702

    Google Scholar Pub Med

    Kostadinova E G, Banka R, Padgett J L, Liaw C D, Matthews L S and Hyde T W 2021 Phys. Plasmas 28 073705

    Google Scholar Pub Med

    Sheridan T E 2016 Phys. Scr. 91 095603

    Google Scholar Pub Med

    Wang H and Du J 2022 Chinese Journal of Physics 75 169

    Google Scholar Pub Med

    Charan H, Ganesh R and Joy A 2014 J. Plasma Phys. 80 895

    Google Scholar Pub Med

    Losseva T V, Popel S I, Yu M Y and Ma J X 2007 Phys. Rev. E 75 046403

    Google Scholar Pub Med

    Gabdulin A Z, Ramazanov T S and Moldabekov Z A 2017 Contributions to Plasma Physics 57 458

    Google Scholar Pub Med

    Rapaport D C 2002 The art of molecular dynamics simulation (Cambridge University Press)

    Google Scholar Pub Med

    Busch J and Paschek D 2024 J. Phys. Chem. B 128 1040

    Google Scholar Pub Med

    Mazars M 2007 J. Chem. Phys. 126 30

    Google Scholar Pub Med

    Ott T and Bonitz M 2009 Phys. Rev. Lett. 103 195001

    Google Scholar Pub Med

    Lu S, Wang K and Feng Y 2019 Phys. Plasmas 26 053704

    Google Scholar Pub Med

    Begum M and Das N 2016 Eur. Phys. J. Plus 131 1

    Google Scholar Pub Med

    Vaulina O S and Khrapak S A 2000 J. Exp. Theor. Phys. 90 287

    Google Scholar Pub Med

    Hartmann P, Kalman G J, Donko Z and Kutasi K 2005 Phys. Rev. E 72 026409

    Google Scholar Pub Med

    Dzhumagulova K N, Masheyeva R U, Ott T, et al. Phys. Rev. E 93 063209

    Google Scholar Pub Med

    Haralson Z and Goree J 2017 Phys. Rev. Lett. 118 195001

    Google Scholar Pub Med

    Liu Y, Blosczy K N and Block D 2023 Phys. Plasmas 30 043705

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(46) PDF downloads(0) Cited by(0)

Access History

Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas

    Corresponding author: Muhammad Asif Shakoori ; 
Fund Project: 

Abstract: We employ the Green-Kubo (G-K) and Einstein relations to estimate the self-diffusion coefficients (denoted as $D_{\rm G}$ and $D_{\rm E}$, respectively) in two-dimensional (2D) strongly coupled dusty plasmas (SC-DPs) via equilibrium molecular dynamics (EMD) simulations. $D_{\rm G}$ and $D_{\rm E}$ are computed for a broad domain of screening length ($\kappa$) and coupling parameters ($\varGamma$) along with different system sizes. It is observed that both $D_{\rm G}$ and $D_{\rm E}$ decrease linearly with increasing $\varGamma$ in warm liquid states and increase with increasing $\kappa$. In cold liquid states, the Einstein relation accurately predicts $D_{\rm E} $ in 2D SC-DPs because diffusion motion is close to normal diffusion, but the G-K relation provides overestimations of $D_{\rm G}$, because VACF indicates anomalous diffusion; thus, $D_{\rm G}$ is not accurate. Our new simulation outcomes reveal that $D_{\rm G}$ and $D_{\rm E}$ remain independent of system sizes. Furthermore, our investigations demonstrate that at higher temperatures, $D_{\rm G}$ and $D_{\rm E} $ converge, suggesting diffusion motion close to normal diffusion, while at lower temperatures, these two values diverge. We find reasonable agreement by comparing current and existing numerical, theoretical and experimental data. Moreover, when normalizing diffusion coefficients by the Einstein frequency and testing against the universal temperature scaling law, $D_{\rm G}$ deviates from theoretical curves at low temperatures and $\kappa$, whereas $D_{\rm E}$ only disagrees with theory at very small $\kappa$ ($\simeq 0.10$). These findings provide valuable insight into diagnosing dust component parameters within 2D DP systems and contribute to the broader understanding of diffusion processes in DP environments.

Reference (66)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return