2025 Volume 34 Issue 4
Article Contents

Wenhao Song(宋文豪), Bo Gan(甘波), Dongxiao Liu(刘东晓), Jie Wu(吴杰), Martin T. Dove, and Youjun Zhang(张友君). 2025: Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica, Chinese Physics B, 34(4): 046101. doi: 10.1088/1674-1056/adb38f
Citation: Wenhao Song(宋文豪), Bo Gan(甘波), Dongxiao Liu(刘东晓), Jie Wu(吴杰), Martin T. Dove, and Youjun Zhang(张友君). 2025: Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica, Chinese Physics B, 34(4): 046101. doi: 10.1088/1674-1056/adb38f

Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica

  • Received Date: 28/12/2024
    Accepted Date: 02/02/2025
  • Fund Project:

    The authors acknowledge Yang Wang, Luyan Zhou, and Haidong Jin for their help in shock-wave experiments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42422201, 12175211, and 12350710177) and the Sichuan Science and Technology Program (Grant No. 2023NSFSC1910).

  • PACS: 61.43.Fs; 64.70.P-; 91.60.Gf; 91.60.Hg

  • Fused silica (SiO$_2$ glass), a key amorphous component of Earth's silicate minerals, undergoes coordination and phase transformations under high pressure. Although extensive studies have been conducted, discrepancies between theoretical and experimental studies remain, particularly regarding strain rate effects during compression. Here, we examine strain rate influences on the shock-induced amorphous-amorphous phase transitions in fused silica by measuring its Hugoniot equation of state and longitudinal sound velocity ($C_{\rm L}$) up to 7 GPa at strain rates of 10$^6$-10$^7$ s$^{-1}$ using a one-stage light-gas gun. A discontinuity in the relationship between shock velocity ($U_{\rm S}$) and particle velocity ($U_{\rm P}$) and a significant softening in $C_{\rm L}$ of fused silica were observed near $\sim 5 $ GPa under shock loading. Our results indicate that high strain rates restrict Si-O-Si rotation in fused silica, modifying their bonds and increasing silicon coordination. The transition pressure by shock compression is significantly higher than that under static high-pressure conditions (2-3 GPa), which agrees with some recent theoretical predictions with high compression rates, reflecting the greater pressure needed to overcome energy barriers with the strain rate increase. These findings offer insights into strain rate-dependent phase transitions in fused silica and other silicate minerals (e.g., quartz, olivine, and forsterite), bridging gaps between theoretical simulations and experiments.
  • 加载中
  • Duffy T, Madhusudhan N and Lee K K M 2015 Treatise on Geophysics 2 149

    Google Scholar Pub Med

    Wu Y, Wang Y, Zhang Y, Jin Z, Wang C and Zhou C 2011 Chin. Sci. Bull. 57 894

    Google Scholar Pub Med

    Wackerle J 1962 J. Appl. Phys. 33 922

    Google Scholar Pub Med

    McQueen R, Fritz J and Marsh S 1963 Journal of Geophysical Research 68 2319

    Google Scholar Pub Med

    McQueen R 1968 Seismic Coupling. Proceedings of a meeting sponsored by the Advanced Research Projects Agency at Stanford Research Institute, Menlo Park, California, pp. 15-16

    Google Scholar Pub Med

    Green S, Isbell W, Jones A, Maiden C, Perkins R and Shipman F 1968 Material Properties Measurements for Selected Materials, NASA-CR-73230

    Google Scholar Pub Med

    Hasmy A, Ispas S and Hehlen B 2021 Nature 599 62

    Google Scholar Pub Med

    Langenhorst F 2024 Nature Geoscience 17 592

    Google Scholar Pub Med

    Lu H B 2024 Reports on Progress in Physics 87 032601

    Google Scholar Pub Med

    Berryman E J,Winey J M, Gupta YMand Duffy T S 2019 Geophysical Research Letters 46 13695

    Google Scholar Pub Med

    Gleason A E, Bolme C A, Lee H J, Nagler B, Galtier E, Milathianaki D, Hawreliak J, Kraus R G, Eggert J H, Fratanduono D E, Collins G W, Sandberg R, Yang W and Mao W L 2015 Nat. Commun. 6 8709

    Google Scholar Pub Med

    Tracy S J, Turneaure S J and Duffy T S 2018 Phys. Rev. Lett. 120 135702

    Google Scholar Pub Med

    Gleason A E, Bolme C A, Lee H J, Nagler B, Galtier E, Kraus R G, Sandberg R, Yang W, Langenhorst F and Mao W L 2017 Nat. Commun. 8 1481

    Google Scholar Pub Med

    Alexander C S, Chhabildas L C, Reinhart W D and Templeton D W 2008 International Journal of Impact Engineering 35 1376

    Google Scholar Pub Med

    Haines J, Leger J M, Gorelli F and Hanfland M 2001 Phys. Rev. Lett. 87 155503

    Google Scholar Pub Med

    Bykova E, Bykov M, Cernok A, Tidholm J, Simak S I, Hellman O, Belov M P, Abrikosov I A, Liermann H P, Hanfland M, Prakapenka V B, Prescher C, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 4789

    Google Scholar Pub Med

    Hu Q Y, Shu J F, Cadien A, Meng Y, Yang W G, Sheng H W and Mao H K 2015 Nat. Commun. 6 6630

    Google Scholar Pub Med

    Ono S, Kikegawa T, Higo Y and Tange Y 2017 Physics of the Earth and Planetary Interiors 264 1

    Google Scholar Pub Med

    Tsiok O B, Brazhkin V V, Lyapin A G and Khvostantsev L G 1998 Phys. Rev. Lett. 80 999

    Google Scholar Pub Med

    Weigel C, Mebarki M, Clement S, Vacher R, Foret M and Ruffle B 2019 Phys. Rev. B 100 094102

    Google Scholar Pub Med

    Zha C, Hemley R J, Mao H, Duffy T S and Meade C 1994 Phys. Rev. B 50 13105

    Google Scholar Pub Med

    Neyer B T 1987 Proc. SPIE 648 301

    Google Scholar Pub Med

    Duffy T S and Ahrens T J 1995 Journal of Geophysical Research: Solid Earth 100 529

    Google Scholar Pub Med

    Trachenko K and Dove M T 2003 Phys. Rev. B 67 064107

    Google Scholar Pub Med

    Trachenko K, Dove M T, Brazhkin V and El’kin F S 2004 Phys. Rev. Lett. 93 135502

    Google Scholar Pub Med

    Ryuo E,Wakabayashi D, Koura A and Shimojo F 2017 Phys. Rev. B 96 054206

    Google Scholar Pub Med

    Daryadel S S, Mantena P R, Kim K, Stoddard D and Rajendran A M 2016 J. Non-Crystalline Solids 432 432

    Google Scholar Pub Med

    Ohtsuka Y 1973 J. Phys. E Sci. Instrum. 6 868

    Google Scholar Pub Med

    Li X H, Yang C, Gan B, Huang Y Q, Wang Q M, Sekine T, Hong J W, Jiang G and Zhang Y J 2022 Phys. Rev. B 105 104110

    Google Scholar Pub Med

    Weng J D, Tan H, Wang X, Ma Y, Hu S L and Wang X S 2006 Appl. Phys. Lett. 89 111101

    Google Scholar Pub Med

    Huang Y Q, Hou M Q, Gan B, Li X H, He D W, Jiang G, Zhang Y J and Liu Y 2022 Journal of Geophysical Research-Solid Earth 127 11

    Google Scholar Pub Med

    Schmitt D R and Ahrens T J 1989 Journal of Geophysical Research 94 5851

    Google Scholar Pub Med

    Ahrens T J and Johnson M L 1995 Mineral Physics & Crystallography pp. 143-184

    Google Scholar Pub Med

    Kondo K-i, Ahrens T J and Sawaoka A 1983 J. Appl. Phys. 54 4382

    Google Scholar Pub Med

    Lyzenga G A and Ahrens T J 1980 Geophysical Research Letters 7 141

    Google Scholar Pub Med

    Marsh S P 1980 LASL shock Hugoniot data (University of California Press)

    Google Scholar Pub Med

    Schmitt D, Svendsen B and Ahrens T J 1986 Shock Waves in Condensed Matter, Gupta Y M ed. (Boston, MA: Springer US) pp. 261- 265

    Google Scholar Pub Med

    Mitchell A and Nellis W 1981 J. Appl. Phys. 52 3363

    Google Scholar Pub Med

    Gan B, Jiang G, Huang Y Q, Zhang H, Hu Q Y and Zhang Y J 2023 Phys. Rev. B 107 064106

    Google Scholar Pub Med

    Zhou L, Jiang G, Gan B, Zhuang Y, Zhang H and Zhang Y 2023 J. Appl. Phys. 133 14

    Google Scholar Pub Med

    Vukcevich M R 1972 J. Non-Crystal. Solids 11 25

    Google Scholar Pub Med

    Grimsditch M 1984 Phys. Rev. Lett. 52 2379

    Google Scholar Pub Med

    Kondo K, Lio S and Sawaoka A 1981 J. Appl. Phys. 52 2826

    Google Scholar Pub Med

    Meade C and Jeanloz R 1987 Phys. Rev. B 35 236

    Google Scholar Pub Med

    Smith R, Minich R, Rudd R, Eggert J, Bolme C, Brygoo S, Jones A and Collins G 2012 Phys. Rev. B 86 245204

    Google Scholar Pub Med

    Kim H, Hambir S A and Dlott D D 2000 Journal of Physical Chemistry B 104 4239

    Google Scholar Pub Med

    Schuler K W, Nunziato J W and Walsh E K 1973 Int. J. Solids Struct. (UK) 9 1237

    Google Scholar Pub Med

    Telfair D 1954 J. Appl. Phys. 25 1062

    Google Scholar Pub Med

    Banishev A A, Shaw W L, Curtis A D and Dlott D D 2014 Appl. Phys. Lett. 104 101914

    Google Scholar Pub Med

    Grady D E 1980 Journal of Geophysical Research 85 913

    Google Scholar Pub Med

    Renou R, Soulard L, Lescoute E, Dereure C, Loison D and Guin J-P 2017 The Journal of Physical Chemistry C 121 13324

    Google Scholar Pub Med

    Syono Y, Goto T, Takei H, Tokonami M and Nobugai K 1981 Science 214 177

    Google Scholar Pub Med

    Langenhorst F, Boustie M, Migault A and Romain J 1999 Earth and Planetary Science Letters 173 333

    Google Scholar Pub Med

    Poirier J, Peyronneau J, Madon M, Guyot F and Revcolevschi A 1986 Nature 321 603

    Google Scholar Pub Med

    Zhang J S and Bass J D 2016 Geophysical Research Letters 43 9611

    Google Scholar Pub Med

    Zhang Y J, Sekine T, He H L, Yu Y, Liu F S and Zhang M J 2016 Scientific Reports 6 22473

    Google Scholar Pub Med

    Duffy T S and Ahrens T J 1992 Journal of Geophysical Research: Solid Earth 97 4503

    Google Scholar Pub Med

    Barron T H K, Collins J F, Smith T W and White G K 1982 J. Phys. C Solid State Phys. 15 4311

    Google Scholar Pub Med

    Petrovtsev A V 2006 AIP Conference Proceedings 849 380

    Google Scholar Pub Med

    Rigg P A, Knudson M D, Scharff R J and Hixson R S 2014 J. Appl. Phys. 116 033515

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(28) PDF downloads(0) Cited by(0)

Access History

Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica

Fund Project: 

Abstract: Fused silica (SiO$_2$ glass), a key amorphous component of Earth's silicate minerals, undergoes coordination and phase transformations under high pressure. Although extensive studies have been conducted, discrepancies between theoretical and experimental studies remain, particularly regarding strain rate effects during compression. Here, we examine strain rate influences on the shock-induced amorphous-amorphous phase transitions in fused silica by measuring its Hugoniot equation of state and longitudinal sound velocity ($C_{\rm L}$) up to 7 GPa at strain rates of 10$^6$-10$^7$ s$^{-1}$ using a one-stage light-gas gun. A discontinuity in the relationship between shock velocity ($U_{\rm S}$) and particle velocity ($U_{\rm P}$) and a significant softening in $C_{\rm L}$ of fused silica were observed near $\sim 5 $ GPa under shock loading. Our results indicate that high strain rates restrict Si-O-Si rotation in fused silica, modifying their bonds and increasing silicon coordination. The transition pressure by shock compression is significantly higher than that under static high-pressure conditions (2-3 GPa), which agrees with some recent theoretical predictions with high compression rates, reflecting the greater pressure needed to overcome energy barriers with the strain rate increase. These findings offer insights into strain rate-dependent phase transitions in fused silica and other silicate minerals (e.g., quartz, olivine, and forsterite), bridging gaps between theoretical simulations and experiments.

Reference (60)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return