2025 Volume 34 Issue 5
Article Contents

Fei Yu(余飞)†, Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). 2025: Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection, Chinese Physics B, 34(5): 050502. doi: 10.1088/1674-1056/adb8bb
Citation: Fei Yu(余飞)†, Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). 2025: Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection, Chinese Physics B, 34(5): 050502. doi: 10.1088/1674-1056/adb8bb

Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection

  • Received Date: 16/12/2024
    Accepted Date: 06/02/2025
  • Fund Project:

    Project supported by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 24A0248), the National Key Research and Development Program “National Quality Infrastructure System” Special Project (Grant No. 2024YFF0617900), and the Hefei Minglong Electronic Technology Co., Ltd. (Grant Nos. 2024ZKHX293, 2024ZKHX294, and 2024ZKHX295).

  • PACS: 05.45.-a; 05.45.Gg; 05.45.Jn; 05.45.Vx

  • Due to their biological interpretability, memristors are widely used to simulate synapses between artificial neural networks. As a type of neural network whose dynamic behavior can be explained, the coupling of resonant tunneling diode-based cellular neural networks (RTD-CNNs) with memristors has rarely been reported in the literature. Therefore, this paper designs a coupled RTD-CNN model with memristors (RTD-MCNN), investigating and analyzing the dynamic behavior of the RTD-MCNN. Based on this model, a simple encryption scheme for the protection of digital images in police forensic applications is proposed. The results show that the RTD-MCNN can have two positive Lyapunov exponents, and its output is influenced by the initial values, exhibiting multistability. Furthermore, a set of amplitudes in its output sequence is affected by the internal parameters of the memristor, leading to nonlinear variations. Undoubtedly, the rich dynamic behaviors described above make the RTD-MCNN highly suitable for the design of chaos-based encryption schemes in the field of privacy protection. Encryption tests and security analyses validate the effectiveness of this scheme.
  • 加载中
  • Saadati M, Khodaei S S and Jamali Y 2024 Communications in Nonlinear Science and Numerical Simulation 137 108133

    Google Scholar Pub Med

    Mou J, Cao H, Zhou N and Cao Y 2024 IEEE Transactions on Cybernetics 54 7333

    Google Scholar Pub Med

    Zhu J, Jin J, Chen C, Wu L, Lu M and Ouyang A 2024 IEEE Transactions on Emerging Topics in Computational Intelligence 1

    Google Scholar Pub Med

    Xu Q, Wang K, Chen M, Parastesh F and Wang N 2024 Chaos Soliton. Fract. 181 114654

    Google Scholar Pub Med

    Deng Q, Wang C, Sun Y, Deng Z and Yang G 2024 IEEE Transactions on Circuits and Systems I: Regular Papers 1-12

    Google Scholar Pub Med

    Hodgkin A L and Huxley A F 1952 Journal of Physiology 117 500

    Google Scholar Pub Med

    Hindmarsh J L and Rose R 1984 Proceedings of the Royal Society of London. Series B. Biological sciences 221 87

    Google Scholar Pub Med

    Morris C and Lecar H 1981 Biophysical Journal 35 193

    Google Scholar Pub Med

    Chua L and Yang L 1988 IEEE Transactions on Circuits and Systems 35 1257

    Google Scholar Pub Med

    Hopfield J J 1982 Proc. Natl. Acad. Sci. USA 79 2554

    Google Scholar Pub Med

    Liao Z, Ouyang J and Ma M 2024 Nonlinear Dynam. 1

    Google Scholar Pub Med

    Yu F,Wu C, Xu S, YaoW, Xu C, Cai S andWang C 2025 Signal, Image and Video Processing 19 77

    Google Scholar Pub Med

    Zhang S, Yao W, Xiong L, Wang Y, Tang L, Zhang X and Yu F 2024 Chaos Soliton. Fract. 187 115408

    Google Scholar Pub Med

    Deng Z, Wang C, Lin H, Deng Q and Sun Y 2024 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 1

    Google Scholar Pub Med

    Dong Z, Duan S, Hu X,Wang L and Li H 2014 ScientificWorld Journal

    Google Scholar Pub Med

    Ji X, Dong Z, Han Y, Lai C S and Qi D 2023 IEEE Transactions on Circuits and Systems for Video Technology 33 7928

    Google Scholar Pub Med

    Ji X, Dong Z, Zhou G, Lai C S and Qi D 2024 IEEE Transactions on Systems, Man, and Cybernetics: Systems 54 5137

    Google Scholar Pub Med

    Itoh M and Chua L O 2009 Int. J. Bifurc. Chaos 19 3605

    Google Scholar Pub Med

    Itoh M and Chua L O 2008 Int. J. Bifurc. Chaos 18 3183

    Google Scholar Pub Med

    Itoh M, Julián P and Chua L O 2001 Int. J. Bifurc. Chaos 11 2913

    Google Scholar Pub Med

    Chua L 1971 IEEE Transactions on Circuit Theory 18 507

    Google Scholar Pub Med

    Wan Q, Yang Q, Liu T, Chen C and Shen K 2024 Chaos Soliton. Fract. 189 115584

    Google Scholar Pub Med

    Yu F, Xu S, Lin Y, Gracia Y M, Yao W and Cai S 2024 Int. J. Bifurc. Chaos 34 2450068

    Google Scholar Pub Med

    Kong X, Yu F, YaoW, Cai S, Zhang J and Lin H 2024 Neural Networks 171 85

    Google Scholar Pub Med

    Yu F, Kong X, Yao W, Zhang J, Cai S, Lin H and Jin J 2024 Chaos Soliton. Fract. 179 114440

    Google Scholar Pub Med

    Wan Q, Liu J, Liu T, Sun K and Qin P 2024 Neural Networks 174 106268

    Google Scholar Pub Med

    YaoW, Fang J, Yu F, Xiong L, Tang L, Zhang J and Sun Y 2024 Chaos 34 073149

    Google Scholar Pub Med

    Zhang S, Chen C, Zhang Y, Cai J, Wang X and Zeng Z 2024 IEEE Transactions on Systems, Man, and Cybernetics: Systems 1

    Google Scholar Pub Med

    Yuan Y, Yu F, Tan B, Huang Y, YaoW, Cai S and Lin H 2025 Chaos 35 013121

    Google Scholar Pub Med

    Tang D, Wang C, Lin H and Yu F 2024 Nonlinear Dynam. 112 1511

    Google Scholar Pub Med

    Luo D, Wang C, Deng Q and Sun Y 2024 Nonlinear Dynam. 1

    Google Scholar Pub Med

    Zhang S, Li Y, Lu D and Li C 2024 Chaos Soliton. Fract. 184 115056

    Google Scholar Pub Med

    Xu Q,Wang K, Feng C, FanWandWang N 2024 Chaos Soliton. Fract. 189 115646

    Google Scholar Pub Med

    Li J, Wang C and Deng Q 2024 Nonlinear Dynam. 112 14463

    Google Scholar Pub Med

    Lin H, Deng X, Yu F and Sun Y 2024 IEEE Internet of Things Journal 11 29878

    Google Scholar Pub Med

    Wang C, Luo D, Deng Q and Yang G 2024 Chaos Soliton. Fract. 187 115471

    Google Scholar Pub Med

    Qi A X, Zhu B D and Wang G Y 2022 Chin. Phys. B 31 020502

    Google Scholar Pub Med

    Wu H, Bian Y, Zhang Y, Guo Y, Xu Q and Chen M 2023 Chaos Soliton. Fract. 177 114201

    Google Scholar Pub Med

    Chen Q, Li B, Yin W, Jiang X and Chen X 2023 Chaos Soliton. Fract. 171 113440

    Google Scholar Pub Med

    Aguirre F, Sebastian A, Le Gallo M, Song W, Wang T, Yang J J, Lu W, Chang M F, Ielmini D, Yang Y, et al. 2024 Nat. Commun. 15 1974

    Google Scholar Pub Med

    Zhou L, Zhang H, Tan F and Liu K 2024 Transactions of the Institute of Measurement and Control 46 2035

    Google Scholar Pub Med

    Sun J, Li C,Wang Z andWang Y 2024 IEEE Transactions on Industrial Informatics 20 3778

    Google Scholar Pub Med

    Liu X, Mou J, Zhang Y and Cao Y 2023 IEEE Transactions on Industrial Electronics 71 5094

    Google Scholar Pub Med

    Yang F, Ma J and Wu F 2024 Chaos Soliton. Fract. 187 115361

    Google Scholar Pub Med

    Kong X, Yu F, YaoW, Xu C, Zhang J, Cai S andWang C 2024 Applied Mathematical Modelling 125 351

    Google Scholar Pub Med

    Zhou L, Lin H and Tan F 2024 Neurocomputing 577 127384

    Google Scholar Pub Med

    Yao W, Liu J, Sun Y, Zhang J, Yu F, Cui L and Lin H 2024 Nonlinear Dynam. 112 693

    Google Scholar Pub Med

    Ma M, Xiong K, Li Z and He S 2024 Chin. Phys. B 33 028706

    Google Scholar Pub Med

    Feng W, Wang Q, Liu H, Ren Y, Zhang J, Zhang S, Qian K and Wen H 2023 Fractal and Fractional 7 887

    Google Scholar Pub Med

    Yu F, Yuan Y, Wu C, Yao W, Xu C, Cai S and Wang C 2024 Nonlinear Dynam. 112 2331

    Google Scholar Pub Med

    Wang M J and Gu L 2024 Chin. Phys. B 33 020504

    Google Scholar Pub Med

    Yu F, Shen H, Yu Q, Kong X, Sharma P K and Cai S 2023 IEEE Transactions on Network Science and Engineering 10 845

    Google Scholar Pub Med

    Lin H, Deng X, Yu F and Sun Y 2024 IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems

    Google Scholar Pub Med

    Wang C, Tang D, Lin H, Yu F and Sun Y 2024 Expert Systems with Applications 242 122513

    Google Scholar Pub Med

    Chen F J and Li J B 2008 Int. J. Bifurc. Chaos 18 3439

    Google Scholar Pub Med

    Huang X, Zhao Z, Wang Z and Li Y 2012 Neurocomputing 94 13

    Google Scholar Pub Med

    Jiao X, Yuan M, Tao J, Sun H, Sun Q and Chen Z 2023 Chin. Phys. B 32 010507

    Google Scholar Pub Med

    Sun Q, He S, Sun K and Wang H 2022 Chin. Phys. B 31 120501

    Google Scholar Pub Med

    Jin J, Lei X, Chen C and Li Z 2024 Mathematics and Computers in Simulation

    Google Scholar Pub Med

    Yu F, ZhangW, Xiao X, YaoW, Cai S, Zhang J,Wang C and Li Y 2024 Fractal and Fractional 8 271

    Google Scholar Pub Med

    Feng W, Yang J, Zhao X, Qin Z, Zhang J, Zhu Z, Wen H and Qian K 2024 Mathematics 12 3917

    Google Scholar Pub Med

    Yu F, Xu S, Lin Y, He T, Wu C and Lin H 2024 Mathematics 12 2227

    Google Scholar Pub Med

    Chua L 2014 Semiconductor Science and Technology 29 104001

    Google Scholar Pub Med

    Deng W and Ma M 2024 Chin. J. Phys. 91 966

    Google Scholar Pub Med

    Itoh M 2019 arXiv:1902.05167 [cs.NE]

    Google Scholar Pub Med

    Hu X, Feng G, Duan S and Liu L 2015 Neurocomputing 162 150

    Google Scholar Pub Med

    Lai Q, Yang L, Hu G, Guan Z H and Iu H H C 2024 IEEE Transactions on Cybernetics 54 4039

    Google Scholar Pub Med

    Wen H and Lin Y 2023 Journal of King Saud University-Computer and Information Sciences 35 101612

    Google Scholar Pub Med

    Ma X, Wang Z and Wang C 2024 Int. J. Bifurc. Chaos 34 2450170

    Google Scholar Pub Med

    Zhou L, Lin Z and Tan F 2024 Physica Scripta 99 045247

    Google Scholar Pub Med

    Wen H and Lin Y 2024 Expert Systems with Applications 237 121514

    Google Scholar Pub Med

    Sun J, Li C,Wang Z andWang Y 2024 IEEE Transactions on Industrial Informatics 20 3778

    Google Scholar Pub Med

    Feng W, Zhang J, Chen Y, Qin Z, Zhang Y, Ahmad M and Wozniak M 2024 Expert Systems with Applications 246 123190

    Google Scholar Pub Med

    Yu F, Lin Y, Yao W, Cai S, Lin H and Li Y 2025 Neural Networks 182 106904

    Google Scholar Pub Med

    Singh A K, Chatterjee K and Singh A 2023 IEEE Transactions on Industrial Informatics 19 1957

    Google Scholar Pub Med

    Lai Q, Wan Z and Kuate P D K 2023 IEEE Transactions on Circuits and Systems I: Regular Papers 70 1324

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(59) PDF downloads(0) Cited by(0)

Access History

Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection

Fund Project: 

Abstract: Due to their biological interpretability, memristors are widely used to simulate synapses between artificial neural networks. As a type of neural network whose dynamic behavior can be explained, the coupling of resonant tunneling diode-based cellular neural networks (RTD-CNNs) with memristors has rarely been reported in the literature. Therefore, this paper designs a coupled RTD-CNN model with memristors (RTD-MCNN), investigating and analyzing the dynamic behavior of the RTD-MCNN. Based on this model, a simple encryption scheme for the protection of digital images in police forensic applications is proposed. The results show that the RTD-MCNN can have two positive Lyapunov exponents, and its output is influenced by the initial values, exhibiting multistability. Furthermore, a set of amplitudes in its output sequence is affected by the internal parameters of the memristor, leading to nonlinear variations. Undoubtedly, the rich dynamic behaviors described above make the RTD-MCNN highly suitable for the design of chaos-based encryption schemes in the field of privacy protection. Encryption tests and security analyses validate the effectiveness of this scheme.

Reference (76)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return