2025 Volume 34 Issue 5
Article Contents

Rui-Qiang Song(宋瑞强), Chuang Liu(刘闯), Yi-Yang Long(龙逸洋), Ji-Feng Han(韩纪锋), Jing Ren(任晶), and Sen Qian(钱森). 2025: A high light-yield neutron scintillator based on Ce3+-doped lithium glass, Chinese Physics B, 34(5): 050703. doi: 10.1088/1674-1056/adb94b
Citation: Rui-Qiang Song(宋瑞强), Chuang Liu(刘闯), Yi-Yang Long(龙逸洋), Ji-Feng Han(韩纪锋), Jing Ren(任晶), and Sen Qian(钱森). 2025: A high light-yield neutron scintillator based on Ce3+-doped lithium glass, Chinese Physics B, 34(5): 050703. doi: 10.1088/1674-1056/adb94b

A high light-yield neutron scintillator based on Ce3+-doped lithium glass

  • Received Date: 30/12/2024
    Accepted Date: 13/02/2025
  • Fund Project:

    Project supported by the National Key R&D Program of China (Grant No. 2023YFF0721700) and the National Natural Science Foundation of China (Grant No. 12475312).

  • PACS: 07.07.Df; 28.20.Fc; 29.30.Hs; 29.40.Mc

  • The development of low-cost and highly efficient thermal neutron detection materials to substitute the rare and expensive $^{3}$He gas is important for applications requiring thermal neutron detection. Lithium-based glass (Li glass) is a promising candidate due to its simple fabrication process and low cost. This paper reports the optical properties and scintillation performance of a new Ce$^{3+}$-doped Li glass, whose luminescence efficiency is significantly enhanced with a light yield of about 4770 ph/MeV, which is about 54% of that of BGO crystal, and the energy resolution is 14.5% for 662 keV gamma rays. The Ce$^{3+}$-doped Li glass shows a high light yield of about 7058 ph/neutron, which is about 1.18 times that of the reference GS20 glass. The Ce$^{3+}$-doped Li glass exhibits stronger gamma ray suppression capability compared to GS20 glass samples. Further optimizing the Ce$^{3+}$ concentration and $^{6}$Li content is expected to achieve much superior neutron detection efficiency, positioning it as a promising alternative to $^{3}$He gas for efficient thermal neutron detection.
  • 加载中
  • Cai X J, Yu Q, Huang C, Tang B, Zhou S H, Wang X H, Yue X P and Sun Z J 2023 Chin. Phys. B 32 110701

    Google Scholar Pub Med

    Yue X P, Zhu Z F, Tang B, Huang C, Yu Q, Chen S J,Wang X K, Hong X, Zhou S H, Cai X J, Yang H, Wan Z Y, Sun Z J and Liu Y T 2023 Chin. Phys. B 32 090402

    Google Scholar Pub Med

    Arkharov A M, Arkharov I A, Dolgopyatov D A and Bondarenko V L 2013 Chem. Petrol. Eng. 49 41

    Google Scholar Pub Med

    Zhou C, Melton A G, Burgett E, Hertel N and Ferguson I T 2019 Sci. Rep. 9 17551

    Google Scholar Pub Med

    Kumar S, Herzkamp M, Durini D, Nöldgen H and Waasen S V 2020 Nucl. Instrum. Methods Phys. Res. Sec. A 954 161697

    Google Scholar Pub Med

    Dosovitskiy G, Akimova O, Amelina A, S Belus, A Fedorov, Karpyuk P, Kozlov D, Mechinsky V, Mikhlin A, Retivov V, Smyslova V, Volkov P and Korzhik M 2020 Rev. J. Chem. 10 1

    Google Scholar Pub Med

    Ciéslak M, Gamage K and Glover R 2019 Crystals 9 480

    Google Scholar Pub Med

    Britvich G I, Vasil’chenko V G, Gilitsky Y V, Chubenko A P, Kushnirenko A E, Mamidzhanyan E A, Pavluchenko V P, Pikalov V A, Romakhin V A, Soldatov A P, Sumaneev O V, Chernichenko S K, Shein I V and Shepetov A L 2005 Nucl. Instrum. Methods Phys. Res. Sec. A 550 343

    Google Scholar Pub Med

    Nguyen L Q, Gabella G, Goldblum B L, Laplace T A, Carlson J S, Brubaker E and Feng P L 2021 Nucl. Instrum. Methods Phys. Res. Sec. A 988 164898

    Google Scholar Pub Med

    Yuan D, Víllora E G, Kawaguchi N, Daisuke Nakauchi, Kato T, Yanagida T and Shimamura K 2022 Jpn. J. Appl. Phys 62 010614

    Google Scholar Pub Med

    Ruan J, Xu M, Chen L, Sun B, Liu B, Liu J, Zhang Z, He S, Zhao K and Ouyang X 2020 Nucl. Instrum. Methods Phys. Res. Sec. A 953 163190

    Google Scholar Pub Med

    Zaitseva N, Glenn A, Martínez H, Carman L, Iwona Pawełczak, Faust M and Payne S A 2013 Nucl. Instrum. Methods Phys. Res. Sec. A 729 747

    Google Scholar Pub Med

    Doan T C, Majety S, Grenadier S, Li J, Lin J Y and Jiang H X 2015 Nucl. Instrum. Methods Phys. Res. Sec. A 783 121

    Google Scholar Pub Med

    Song R, Yan X, Han J, Luo X, Ren F, Zhang Y, Han Z, Wen C, Zhang X, Chen L, Lin W, Qu G, Liu X, Leng Q, Zhu J, Qian S and Wang Z 2023 IEEE Trans. Nucl. Sci. 70 2148

    Google Scholar Pub Med

    Sykora G J, Mann S E, Mauri G, Schooneveld E M and Rhodes and Rhodes N J 2024 Opt. Mater. X 24 100373

    Google Scholar Pub Med

    Min S, Kang H, Seo B, Cheong J, Roh C and Hong S 2021 Energies 14 7701

    Google Scholar Pub Med

    Kojima T, Katagiri M, Tsutsui N, Imai K, MatsubayashiMand Sakasai K 2004 Nucl. Instrum. Methods Phys. Res. Sec. A 529 325

    Google Scholar Pub Med

    Syntfeld A, Moszynski M, Arlt R, Balcerzyk M, Kapusta M, Majorov M, Marcinkowski R, Schotanus P, Swoboda M and Wolski D 2005 IEEE Trans. Nucl. Sci. 52 3151

    Google Scholar Pub Med

    Gektin A V, Shiran N V and Voronova V V 1997 IEEE Trans. Nucl. Sci. 44 857

    Google Scholar Pub Med

    Song R Q, Han J F, Yan X Y, Luo X B, Ren F X, Han Z,Wen C, Zhang X, Zhang Y R, Chen L, Yi C Q, Qu G F, Liu X Q, Lin W P, Leng Q Z, Zhu J J, Qian S, Wang Z G, Tong Y F and Tang G 2023 Nucl. Instrum. Methods Phys. Res. Sec. A 1055 168533

    Google Scholar Pub Med

    Tong Y F,Wei Q H, Song R Q, Zheng Z, Ma L S, Hua Z H, Qian S and Qin L S 2023 Opt. Mater. 142 114119

    Google Scholar Pub Med

    Ren F X, Han J F, Song R Q, Qian S, Wei Q H, Tang G, Liu X Q, Qu G F, Zhang J X, Yi C Q, Chen Y M, Ren P P, Sun X Y, Cai H, Ban H Y, Wang Z L and Ren J 2024 J. Instrum. 19 P08025

    Google Scholar Pub Med

    Yi C Q, Han J F, Song R Q, Yan X Y, Ren F X, Luo X B, Han Z, Wen C, Qu G F, Liu X Q, Lin W P, Wang P, Fan Y X, Qian S, Wang Z G, Tang G, Qin L S,Wang X and Liu J 2023 Nucl. Instrum. Methods Phys. Res. Sec. A 1055 168561

    Google Scholar Pub Med

    Kim C, Lee W, Melis A, Elmughrabi A, Lee K, Park C and Yeom J Y 2021 Crystals 11 669

    Google Scholar Pub Med

    Nikl M and Yoshikawa A 2015 Adv. Opt. Mater. 3 463

    Google Scholar Pub Med

    Tong Y F,Wei Q H, Shu C, Yin H, Zhang S Y, Zheng Z Q, Cai P Q, Liu Z G, Ma L S, Song R Q, Hua Z H, Qian S and Qin L S 2023 J. Cryst. 613 127200

    Google Scholar Pub Med

    MooreME, Pavel Trtik, Lousteau J, Pugliese D, Brambilla G and Hayward J P 2019 J. Lightwave Technol. 37 5699

    Google Scholar Pub Med

    Katagiri M, K Sakasai, M Matsubayashi and Kojima T 2004 Nucl. Instrum. Methods Phys. Res. Sec. A 529 317

    Google Scholar Pub Med

    Stephan M, Zachau M, Gröting M, Karplak O, Eyert V, Mishra K C and Schmidt P C 2005 J. Lumin. 114 255

    Google Scholar Pub Med

    Nikl M, Bruza P, Panek D, Vrbova M, Mihokova E, Mares J A, Beitlerova A, Kawaguchi N, Fukuda K and Yoshikawa A 2013 Appl. Phys. Lett. 102 161907

    Google Scholar Pub Med

    Dorenbos P 2002 Nucl. Instrum. Methods Phys. Res. Sec. A 486 208

    Google Scholar Pub Med

    Struebing C, Chong J, Lee G, Zavala M, Erickson A, Ding Y, Wang CL, Diawara Y, Engels R, Wagner B and Kang Z 2016 Appl. Phys. Lett. 108 153106

    Google Scholar Pub Med

    Kimura H, Shinozaki K, Okada G, Kawaguchi N and Yanagida T 2018 J. Non. Cryst. Solids. 508 46

    Google Scholar Pub Med

    Miyazaki K, Daisuke Nakauchi, Kato T, Kawaguchi N and Yanagida T 2023 Opt. Mater. 146 114557

    Google Scholar Pub Med

    Teng L M, Zhang W N, Chen W P, Cao J K, Sun X Y and Guo H 2020 Cern. Int. 46 10718

    Google Scholar Pub Med

    Sun X Y, Liu X J, Wu Y, Xiao Z, Chen Q, Wang W F and Yang Q M 2019 Cern. Int. 46 4035

    Google Scholar Pub Med

    Hua Z H, Qian S, Cai H, Du D J, Fan R R, Han J F, Hu C, Hu P, Liu S, Liu Y, Ma L S, Qin L S, Ren J, Song R Q, Sui Z X, Sun X L, Sun X Y, Tang G, Wang Z G, Wu Q, Yang D, Zheng L R and Zhu Y 2024 Radiat. Detect. Technol. Methods 8 1107

    Google Scholar Pub Med

    Bliss M, Craig R A and Reeder P L 1994 Nucl. Instrum. Methods Phys. Res. Sec. A 342 357

    Google Scholar Pub Med

    Bollinger L M, Thomas G N and Ginther R J 1962 Nucl. Instrum. Methods Phys. Res. Sec. A 17 97

    Google Scholar Pub Med

    Mesick K E, Coupland D D S and Stonehill L C 2017 Nucl. Instrum. Methods Phys. Res. Sec. A 841 139

    Google Scholar Pub Med

    Ferrulli F, M. Labalme and M. Silari 2022 Nucl. Instrum. Methods Phys. Res. Sec. A 1029 166460

    Google Scholar Pub Med

    Saha S, Ntarisa A V, Nguyen D Q, Luan N T, Vuong P Q, Kim H J, Intachai N, Kothan S and Kaewkhao J 2022 Radiat. Phys. Chem. 199 110285

    Google Scholar Pub Med

    Kamada K, Endo T, Tsutumi K, Yanagida T, Fujimoto Y, Fukabori A, Yoshikawa A, Pejchal J and Nikl M 2011 Cryst. Growth. Des. 11 4484

    Google Scholar Pub Med

    Liu J, Zhao X D, Xu Y S, Wu H D, Xu X H, Lu P, Zhang X H, Zhao X J, Xia M L, Tang J, Niu G D 2023 Laser. Photonics. Rev. 17 2300006

    Google Scholar Pub Med

    Kumar V and Luo Z 2021 Photonics 8 71

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(194) PDF downloads(1) Cited by(0)

Access History

A high light-yield neutron scintillator based on Ce3+-doped lithium glass

Fund Project: 

Abstract: The development of low-cost and highly efficient thermal neutron detection materials to substitute the rare and expensive $^{3}$He gas is important for applications requiring thermal neutron detection. Lithium-based glass (Li glass) is a promising candidate due to its simple fabrication process and low cost. This paper reports the optical properties and scintillation performance of a new Ce$^{3+}$-doped Li glass, whose luminescence efficiency is significantly enhanced with a light yield of about 4770 ph/MeV, which is about 54% of that of BGO crystal, and the energy resolution is 14.5% for 662 keV gamma rays. The Ce$^{3+}$-doped Li glass shows a high light yield of about 7058 ph/neutron, which is about 1.18 times that of the reference GS20 glass. The Ce$^{3+}$-doped Li glass exhibits stronger gamma ray suppression capability compared to GS20 glass samples. Further optimizing the Ce$^{3+}$ concentration and $^{6}$Li content is expected to achieve much superior neutron detection efficiency, positioning it as a promising alternative to $^{3}$He gas for efficient thermal neutron detection.

Reference (45)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return