2025 Volume 34 Issue 4
Article Contents

Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). 2025: Strain-modulated superconductivity of monolayer Tc2B2, Chinese Physics B, 34(4): 047104. doi: 10.1088/1674-1056/adb94d
Citation: Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). 2025: Strain-modulated superconductivity of monolayer Tc2B2, Chinese Physics B, 34(4): 047104. doi: 10.1088/1674-1056/adb94d

Strain-modulated superconductivity of monolayer Tc2B2

  • Received Date: 27/01/2025
    Accepted Date: 10/02/2025
    Available Online: 20/04/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12274169, 12122405, and 52072188), the National Key Research and Development Program of China (Grant No. 2022YFA1402304), the Program for Science and Technology Innovation Team in Zhejiang Province, China (Grant No. 2021R01004), and the Fundamental Research Funds for the Central Universities.

  • PACS: 71.15.Mb; 68.35.Gy; 74.25.Jb; 74.25.Kc

  • Two-dimensional (2D) superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices. Herein, we employ first-principles calculations to predicted a new 2D conventional superconductor, Tc$_{2}$B$_{2}$, demonstrating its stable structural configuration. Remarkably, under biaxial strain, the superconducting transition temperature ($T_{\rm c}$) of Tc$_{2}$B$_{2}$ demonstrates a significant enhancement, achieving 19.5 K under 3% compressive strain and 9.2 K under 11% tensile strain. Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect, which amplifies electron-phonon coupling interactions and consequently elevates $T_{\rm c}$. Additionally, the presence of the Lifshitz transition results in a more pronounced rise in $T_{\rm c}$ under compressive strain compared to tensile strain. These insights offer important theoretical guidance for designing 2D superconductors with high-$T_{\rm c}$ through strain modulation.

  • 加载中
  • Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666

    Google Scholar Pub Med

    Zhang H, Huang J X,Wang YW, Liu R, Huai X L, Jiang J J and Anfuso C 2018 Opt. Commun. 406 3

    Google Scholar Pub Med

    Li H D, Luo T Y, Zhang S F, Sun Z J, He X, Zhang W F and Chang H X 2021 Energy & Environ. Mater. 4 46

    Google Scholar Pub Med

    Zhang X, Shao K, Yan C, Qin R, Lu Z, Geng H, Xu T and Ju L 2021 Mater. Design 200 109452

    Google Scholar Pub Med

    Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z and Zhao J 2021 Appl. Phys. Rev. 8 109452

    Google Scholar Pub Med

    Tao H, Fan Q, Ma T, Liu S, Gysling H, Texter J, Guo F and Sun Z 2020 Prog. Mater. Sci. 111 100637

    Google Scholar Pub Med

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43

    Google Scholar Pub Med

    Li W, Huang J, Li X, Zhao S, Lu J, Han Z V and Wang H 2021 Mater. Today Phys. 21 100504

    Google Scholar Pub Med

    Bekaert J, Petrov M, Aperis A, Oppeneer PMand MiloševićMV 2019 Phys. Rev. Lett. 123 077001

    Google Scholar Pub Med

    Yang S X, Chen Y J and Jiang C B 2021 Infomat. 3 397

    Google Scholar Pub Med

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63

    Google Scholar Pub Med

    Xie H, Wang H, Qin F, Han W, Wang S, Wang Y, Tian F and Duan D 2023 Matter Radiat. Extrem. 8 058404

    Google Scholar Pub Med

    Guo Z, Li X, Bergara A, Ding S, Zhang X and Yang G 2023 Matter Radiat. Extrem. 8 068401

    Google Scholar Pub Med

    Chen C H, Lan Y S, Huang A and Jeng H T 2024 Nanoscale Horiz. 9 148

    Google Scholar Pub Med

    Ma L, Wang L, Yuan Y, Guo H and Wang H 2023 Chin. Phys. Lett. 40 086201

    Google Scholar Pub Med

    Wang R, Sun Y, Zhang F, Zheng F, Fang Y, Wu S, Dong H, Wang C Z, Antropov V and Ho K M 2022 Inorg. Chem. 61 18154

    Google Scholar Pub Med

    Tao X, Yang A, Quan Y,Wan B, Yang S and Zhang P 2024 Phys. Chem. Chem. Phys. 26 16963

    Google Scholar Pub Med

    Yan L, Bo T, Liu P F, Zhou L J, Zhang J R, Tang M H, Xiao Y G and Wang B T 2020 J. Mater. Chem. C 8 1704

    Google Scholar Pub Med

    Yan L, Bo T, Zhang W X, Liu P F, Lu Z S, Xiao Y G, Tang M H and Wang B T 2019 Phys. Chem. Chem. Phys. 21 15327

    Google Scholar Pub Med

    Song B Y, Zhou Y, Yang H M, Liao J H, Yang L M, Yang X B and Ganz E 2019 J. Am. Chem. Soc. 141 3630

    Google Scholar Pub Med

    Han Y L, Li Y P, Yang L, Liu H D, Jiao D, Wang B T, Lu H Y and Zhang P 2023 Mater. Today Phys. 30 100954

    Google Scholar Pub Med

    Yan L, Bo T, Liu P F, Wang B T, Xiao Y G and Tang M H 2019 J. Mater. Chem. C 7 2589

    Google Scholar Pub Med

    Qu Z Y, Lin S Y, Xu M L, Hao J, Shi J M, Cui W W and Li Y W 2019 J. Mater. Chem. C 7 11184

    Google Scholar Pub Med

    Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063

    Google Scholar Pub Med

    Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116

    Google Scholar Pub Med

    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Google Scholar Pub Med

    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar Pub Med

    Grimme S 2006 J. Comput. Chem. 27 1787

    Google Scholar Pub Med

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A Dal, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502

    Google Scholar Pub Med

    Tang C, Kour G and Du A 2019 Chin. Phys. B 28 107306

    Google Scholar Pub Med

    Yang L M, Bačić V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757

    Google Scholar Pub Med

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372

    Google Scholar Pub Med

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033

    Google Scholar Pub Med

    Lifshitz I M 1960 Sov. Phys. JETP 11 1130

    Google Scholar Pub Med

    Aoki D, Seyfarth G, Pourret A, Gourgout A, McCollam A, Bruin J A N, Krupko Y and Sheikin I 2016 Phys. Rev. Lett. 116 037202

    Google Scholar Pub Med

    Liu C, Kondo T, Fernandes R M, Palczewski A D, Mun E D, Ni N, Thaler A N, Bostwick A, Rotenberg E, Schmalian, Bud’ko J S L, Canfield P C and Kaminski A 2010 Nat. Phys. 6 419

    Google Scholar Pub Med

    Zhai H C, Munoz F and Alexandrova A N 2019 J. Mater. Chem. C 7 10700

    Google Scholar Pub Med

    Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G and Cohen M L 2010 Comput. Phys. Commun. 181 2140

    Google Scholar Pub Med

    Ponce S, Margine E, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(25) PDF downloads(0) Cited by(0)

Access History

Strain-modulated superconductivity of monolayer Tc2B2

Fund Project: 

Abstract: 

Two-dimensional (2D) superconductors have attracted significant research interest due to their promising potential applications in optoelectronic and microelectronic devices. Herein, we employ first-principles calculations to predicted a new 2D conventional superconductor, Tc$_{2}$B$_{2}$, demonstrating its stable structural configuration. Remarkably, under biaxial strain, the superconducting transition temperature ($T_{\rm c}$) of Tc$_{2}$B$_{2}$ demonstrates a significant enhancement, achieving 19.5 K under 3% compressive strain and 9.2 K under 11% tensile strain. Our study reveals that strain-induced modifications in Fermi surface topology significantly enhance the Fermi surface nesting effect, which amplifies electron-phonon coupling interactions and consequently elevates $T_{\rm c}$. Additionally, the presence of the Lifshitz transition results in a more pronounced rise in $T_{\rm c}$ under compressive strain compared to tensile strain. These insights offer important theoretical guidance for designing 2D superconductors with high-$T_{\rm c}$ through strain modulation.

Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return