2025 Volume 34 Issue 5
Article Contents

Chun-Xiao Liu(刘春晓), Zi-Hao Wang(王子昊), Bei-Er Guo(郭贝尔), Rui Yuan(袁睿), Yi-Fan Wang(王逸凡), Yu-Hang Zhou(周雨航), Jia-Bin Sun(孙家彬), Liao-Lin Zhang(张料林), and Hai-Tao Guo(郭海涛). 2025: Guiding and magneto-optical properties of TGG waveguide by proton implantation combined with femtosecond laser ablation, Chinese Physics B, 34(5): 054207. doi: 10.1088/1674-1056/adb9cc
Citation: Chun-Xiao Liu(刘春晓), Zi-Hao Wang(王子昊), Bei-Er Guo(郭贝尔), Rui Yuan(袁睿), Yi-Fan Wang(王逸凡), Yu-Hang Zhou(周雨航), Jia-Bin Sun(孙家彬), Liao-Lin Zhang(张料林), and Hai-Tao Guo(郭海涛). 2025: Guiding and magneto-optical properties of TGG waveguide by proton implantation combined with femtosecond laser ablation, Chinese Physics B, 34(5): 054207. doi: 10.1088/1674-1056/adb9cc

Guiding and magneto-optical properties of TGG waveguide by proton implantation combined with femtosecond laser ablation

  • Received Date: 27/12/2024
    Accepted Date: 13/02/2025
  • Fund Project:

    Project supported by the Postgraduate Research and Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1133), the National Natural Science Foundation of China (Grant No. 11405041), the Key Research and Development Program of Jiangxi Province, China (Grant No. 20223BBE51020), and the Opening Fund of Key Laboratory of Rare Earths (Chinese Academy of Sciences).

  • PACS: 42.79.Gn; 61.80.Jh

  • Integrating the magneto-optical effect into a waveguide-based photonic device becomes more and more interesting. In the work, the planar optical waveguide firstly was prepared in a terbium gallium garnet crystal (TGG) via the proton implantation with the energy of 4$\times10^{-1}$ MeV and the fluence of 6$\times 10^{8}$ ions/μm$^{2}$. Subsequently, a femtosecond laser with a central wavelength of 800 nm and a power of 3 mW was used to ablate the surface of the planar waveguide, forming the ridge optical waveguide. The dark-mode curve of the planar waveguide was measured by a prism coupling technique. The top-view morphology of the ridge waveguide was observed via a Nikon microscope. The mode field distributions of the planar and ridge waveguides were obtained by an end-face coupling system, and the propagation losses of the two waveguides were measured to be 2.26 dB/cm and 2.58 dB/cm, respectively. The Verdet constants were measured to be $-72.7 ^\circ$/T$\cdot$cm for the TGG substrate and $-60.7 ^\circ$/T$\cdot$cm for the ridge waveguide. The TGG waveguides have a potential in the fabrication of magneto-optical waveguide devices.
  • 加载中
  • Carothers K J, Norwood R A and Pyun J 2022 Chem. Mater. 34 2531

    Google Scholar Pub Med

    Pintus P, Ranzani L, Pinna S, Huang D, Gustafsson M V, Karinou F, Casula G A, Shoji Y, Takamura Y, Mizumoto T, Soltani M and Bowers J E 2022 Nat. Electron. 5 604

    Google Scholar Pub Med

    Shoji Y and Mizumoto T 2018 Opt. Mater. Express 8 2387

    Google Scholar Pub Med

    Chen T B, Yu Y X, Li L C, Zhu J, Cong M H and Song J Y 2021 J. Cryst. Growth 562 126090

    Google Scholar Pub Med

    Wu Z, Zhang Z H, Zhang Z, Zhou S Y, Su L B andWu A H 2024 Chin. J. Quantum Electron. 41 194 (in Chinese)

    Google Scholar Pub Med

    Jin WZ, Ding J X, Guo L, Gu Q, Li C, Su L B, Wu A H and Zeng F M 2018 J. Cryst. Growth 484 17

    Google Scholar Pub Med

    Snetkov I and Li J 2022 Magnetochemistry 8 168

    Google Scholar Pub Med

    Chen S, Zhuo M P, Wang X D, Wei G Q and Liao L S 2021 PhotoniX 2 1

    Google Scholar Pub Med

    Fan Y L, Yang X B, Lian H D, Chen R K, Zhu P B, Deng D M, Liu H Z and Wei Z C 2024 Chin. Phys. B 33 034201

    Google Scholar Pub Med

    Zhao D, Fan F, Li T F, Tan Z Y, Cheng J R and Chang S J 2022 Sci. China Inf. Sci. 65 169401

    Google Scholar Pub Med

    Okamoto K 2021 Fundamentals of optical waveguides (Amsterdam: Elsevier) p. 15

    Google Scholar Pub Med

    Lu Y, Yin H Y, Chen B K, Zhang L L, Fu L L, Yue Q Y, Zheng R L, Lin S B and Liu C X 2022 Mod. Phys. Lett. B 36 2150581

    Google Scholar Pub Med

    Bazzan M and Sada C 2015 Appl. Phys. Rev. 2 040603

    Google Scholar Pub Med

    Minemura D, Kou R, Sutoh Y, Murai T, Yamada K and Shoji Y 2023 Opt. Express 31 27821

    Google Scholar Pub Med

    Huang L Q, Wu H Y, Cai G X, Wu S X, Li D R, Jiang T, Qiao B Y, Jiang C Z and Ren F 2024 ACS Nano 18 2578

    Google Scholar Pub Med

    Pan H, Shi W H, Zhang Z X, Chen H Y, Fu L L, Zhang L L, Lin S B and Liu C X 2023 J. Mater. Sci.: Mater. Electron. 34 1091

    Google Scholar Pub Med

    You J L, Wang Y S, Wang T, Zhang L L, Fu L L, Yue Q Y, Wang X F, Zheng R L and Liu C X 2022 Chin. Phys. B 31 114203

    Google Scholar Pub Med

    Liu C X, Liu T, Liu X H, Wei W and Peng B 2011 Chin. Phys. Lett. 28 114205

    Google Scholar Pub Med

    Chen F, Amekura H and Jia Y C 2020 Ion irradiation of dielectrics for photonic applications (Singapore: Springer-Nature) pp. 7-10

    Google Scholar Pub Med

    Zhao J, Ni X, Huo Y Y, Sun W, Zhang L L and Liu C X 2024 Phys. Scr. 99 055560

    Google Scholar Pub Med

    He S, Zhang Z Y, Liu H L, Akhmadaliev S, Zhou S Q, Wang X P and Wu P F 2019 Appl. Phys. Express 12 076502

    Google Scholar Pub Med

    Xu H, Li Z Q, Pang C, Li R, Li G L, Akhmadaliev Sh, Zhou S Q, Lu Q M, Jia Y C and Chen F 2022 Chin. Phys. B 31 094209

    Google Scholar Pub Med

    Chen F and Aldana J R V de 2014 Laser Photon. Rev. 8 251

    Google Scholar Pub Med

    Zhang J, Zhang Y, Xu J, Lin S B and Liu C X 2020 Vacuum 172 109093

    Google Scholar Pub Med

    Peyton R, Guarepi V, Videla F and Torchia G A 2020 Opt. Laser Technol. 125 106059

    Google Scholar Pub Med

    Wang Y, Shen X L, Zhu Q F and Liu C X 2018 Opt. Mater. Express 8 3288

    Google Scholar Pub Med

    Chandler P J and Lama F L 1986 Opt. Acta 33 127

    Google Scholar Pub Med

    Liu C X, Sun W, Zhang J Y, Fu L L, Yun L and Zhang L L 2024 Opt. Eng. 63 017102

    Google Scholar Pub Med

    Liu C X, Zhao J, Hua Z Y, Yang Y C, Sun W, Zhang L L and Wang X F 2023 Results Phys. 54 107103

    Google Scholar Pub Med

    Zhao D, Fan F, Xue Q,Wang H, Ji Y Y, Yang Q H,Wen Q Y and Chang S J 2024 Adv. Funct. Mater. 34 2404881

    Google Scholar Pub Med

    Zhao D, Fan F, Tan Z Y, Wang H and Chang S J 2023 Laser Photon. Rev. 17 2200509

    Google Scholar Pub Med

    Tan Z Y, Fan F, Zhao D, Wang H, Li S S, Guan S N, Cheng J R, Ji Y Y and Chang S J 2024 Laser Photon. Rev. 18 2301008

    Google Scholar Pub Med

    Zhao D, Fan F, Liu J Y, Tan Z Y, Wang H, Yang Q H, Wen Q Y and Chang S J 2023 Optica 10 1295

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(177) PDF downloads(0) Cited by(0)

Access History

Guiding and magneto-optical properties of TGG waveguide by proton implantation combined with femtosecond laser ablation

Fund Project: 

Abstract: Integrating the magneto-optical effect into a waveguide-based photonic device becomes more and more interesting. In the work, the planar optical waveguide firstly was prepared in a terbium gallium garnet crystal (TGG) via the proton implantation with the energy of 4$\times10^{-1}$ MeV and the fluence of 6$\times 10^{8}$ ions/μm$^{2}$. Subsequently, a femtosecond laser with a central wavelength of 800 nm and a power of 3 mW was used to ablate the surface of the planar waveguide, forming the ridge optical waveguide. The dark-mode curve of the planar waveguide was measured by a prism coupling technique. The top-view morphology of the ridge waveguide was observed via a Nikon microscope. The mode field distributions of the planar and ridge waveguides were obtained by an end-face coupling system, and the propagation losses of the two waveguides were measured to be 2.26 dB/cm and 2.58 dB/cm, respectively. The Verdet constants were measured to be $-72.7 ^\circ$/T$\cdot$cm for the TGG substrate and $-60.7 ^\circ$/T$\cdot$cm for the ridge waveguide. The TGG waveguides have a potential in the fabrication of magneto-optical waveguide devices.

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return