2025 Volume 34 Issue 5
Article Contents

Jin-Ze Liu(刘金泽) and Wen-Shan Duan(段文山)†. 2025: Vibration modes of a bubble close to a boundary, Chinese Physics B, 34(5): 054701. doi: 10.1088/1674-1056/adbd24
Citation: Jin-Ze Liu(刘金泽) and Wen-Shan Duan(段文山)†. 2025: Vibration modes of a bubble close to a boundary, Chinese Physics B, 34(5): 054701. doi: 10.1088/1674-1056/adbd24

Vibration modes of a bubble close to a boundary

  • Received Date: 27/11/2024
    Accepted Date: 22/01/2025
  • Fund Project:

    This work was supported by the National Natural Science Foundation of China (Grant No. 12275223).

  • PACS: 47.55.dd; 43.25.+y

  • Using the recently proposed bubble equation, we study the vibration characteristics of a bubble close to a solid boundary. The results indicate that a rigid boundary has an important effect on large-amplitude bubble vibration. Whether the bubble vibration is stable or unstable strongly depends on the distance between the initial bubble center and the solid boundary. Furthermore, it also depends on both the amplitude and the frequency of the external perturbation. It is found that the smaller the distance between the initial bubble center and the solid boundary, the larger the initial bubble radius and the larger both the amplitude and frequency of the external perturbation, the more easily the bubble vibration becomes unstable. It is shown that this unstable bubble vibration is possibly related to the production of a reentrant microjet for the bubble, which suggests a potential method for estimating bubble size and the distance between the bubble center and the solid boundary by exerting an external perturbation with controllable amplitude and frequency on the liquid. Furthermore, the dependence of the natural frequency of the bubble on the external pressure for small-amplitude vibration can reveal the bubble radius and the distance between the bubble center and the solid boundary. In addition, the vibration characteristics of a bubble close to a solid boundary under a periodic external perturbation are revealed. Several bubble vibration modes are identified; the strongest vibration modes are those with the natural frequency and the external vibration frequency.
  • 加载中
  • Plesset M S and Prosperetti A 1977 Ann. Rev. Fluid Mech. 9 145

    Google Scholar Pub Med

    PIesset M S 1949 J. Appl. Mech. 16 277

    Google Scholar Pub Med

    Brennen C 1973 ASME. J. Fluids Eng. 95 533

    Google Scholar Pub Med

    Minnaert M 1933 Philos. Mag. 16 235

    Google Scholar Pub Med

    Plesset M S and Hsieh D Y 1960 Phys. Fluids 3 882

    Google Scholar Pub Med

    Chapman R B and Plesset M S 1971 J. Basic Eng. 93 373

    Google Scholar Pub Med

    Devin C 1959 J. Acoust. Soc. Am. 31 1654

    Google Scholar Pub Med

    Brennen C E 2013 Cavitation and Bubble Dynamics (Cambridge University Press)

    Google Scholar Pub Med

    Cole R H and Weller R 1948 Phys. Today 1 35

    Google Scholar Pub Med

    Keller J B and Kolodner I I 1956 J. Appl. Phy. 27 1152

    Google Scholar Pub Med

    Keller J B and Miksis M 1980 J. Acouet. Soc. Am. 68 628

    Google Scholar Pub Med

    Prosperetti A and Lezzi A 1986 J. Fluid Mech. 168 457

    Google Scholar Pub Med

    Trilling L 1952 J. Appl. Phys. 23 14

    Google Scholar Pub Med

    Magaletti F, Marino L and Casciola C M 2015 Phys. Rev. Lett. 114 064501

    Google Scholar Pub Med

    Koukouvinis P, Gavaises M, Supponen O and Farhat M 2016 Phys. Fluids 28 052103

    Google Scholar Pub Med

    Shaw S J and Spelt P D M 2010 J. Fluid Mech. 646 363

    Google Scholar Pub Med

    Brujan E A, Keen G S, Vogel A and Blake J R 2002 Phys. Fluids 14 85

    Google Scholar Pub Med

    Xu L, Yao X R and Shen Y 2024 Chin. Phys. B 33 044702

    Google Scholar Pub Med

    Karri B, Avila S R G, Loke Y C, O’Shea S J, Klaseboer E, Khoo B C and Ohl C D 2012 Phys. Rev. E 85 015303

    Google Scholar Pub Med

    Wang X L, Wang Y, Liu H L, Xiao Y D, Jiang L L and Li M 2023 Int. J. Heat Mass Tran. 201 123591

    Google Scholar Pub Med

    Zhao X T, Shen X, Geng L L, Zhang D S and Van Esch B P M 2023 Phys. Fluids 35 115135

    Google Scholar Pub Med

    Zhu C S, Zhao B R, Lei Y and Guo X T 2023 Chin. Phys. B 32 044702

    Google Scholar Pub Med

    Lindau O and Lauterborn W 2003 J. Fluid Mech. 479 327

    Google Scholar Pub Med

    Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N and Farhat M 2016 J. Fluid Mech. 802 263

    Google Scholar Pub Med

    Hsiao C T, Jayaprakash A, Kapahi A, Choi J K and Chahine G L 2014 J. Fluid Mech. 755 142

    Google Scholar Pub Med

    Appel J, Koch P, Mettin R, Krefting D and Lauterborn W 2004 Ultrason. Sonochem. 11 39

    Google Scholar Pub Med

    Luo X W, Ji B and Tsujimoto Y 2016 J. Hydrodyn. 28 335

    Google Scholar Pub Med

    Philipp A and Lauterborn W 1998 J. Fluid Mech. 361 75

    Google Scholar Pub Med

    Luo J, Xu W L, Deng J, Zhai Y W and Zhang Q 2018 Water 10 1262

    Google Scholar Pub Med

    Sagar H J and Moctar O E 2020 J. Fluids Struct. 92 102799

    Google Scholar Pub Med

    Zhu S, Cocks F H, Preminger GMand Zhong P 2002 Ultrasound Med. Biol. 28 661

    Google Scholar Pub Med

    Brujan E A, Ikeda T and Matsumoto Y 2004 Phys. Fluids 16 2402

    Google Scholar Pub Med

    Ni B Y, Zhang A M and Wu G X 2015 J. Fluid Eng. 137 031206

    Google Scholar Pub Med

    Lauer E, Hu X Y, Hickel S and Adams N A 2012 Comput. Fluids 69 1

    Google Scholar Pub Med

    Li S M, Zhang A M, Wang Q X and Zhang S 2019 Phys. Fluids 31 107105

    Google Scholar Pub Med

    Koch M, Lechner C, Reuter F, Köhler K, Mettin R and Lauterborn W 2015 Comput. Fluids 126 71

    Google Scholar Pub Med

    Sagar H J and Moctor O E 2020 J. Fluids Struct. 92 102799

    Google Scholar Pub Med

    Oguchi K, Enoki M and Hirata N 2015 Mater. Trans. 56 534

    Google Scholar Pub Med

    Chen T N, Guo Z N, Zeng BW, Yin S H, Deng Y and Li H H 2017 Int. Adv. Manuf. Technol. 93 3275

    Google Scholar Pub Med

    Zhang Y N, Qiu X, Zhang X Q, Tao N N and Zhang Y N 2020 Ultrason. Sonochem. 67 105157

    Google Scholar Pub Med

    Wang C, Rallabandi B and Hilgenfeldt S 2013 Phys. Fluids 25 02200

    Google Scholar Pub Med

    Shaw S J, Jin Y H, Schiffers W P and Emmony D C 1996 J. Acoust. Soc. Am. 99 2811

    Google Scholar Pub Med

    Vesipa R, Paissoni E, Manes C and Ridolfi L 2021 Phys. Rev. E 103 023108

    Google Scholar Pub Med

    Han R, Tao L B, Zhang A M and Li S 2019 Ocean Eng. 186 106096

    Google Scholar Pub Med

    Cui P, Zhang A M, Wang S P and Liu Y L 2020 J. Fluid Mech. 897 A25

    Google Scholar Pub Med

    Li X F, Duan Y X, Zhang Y N, Tang N N and Zhang Y N 2019 Symmetry 11 1051

    Google Scholar Pub Med

    Colonius T, Hagmeijer R, Ando K and Brennen C E 2008 Phys. Fluids 20 040902

    Google Scholar Pub Med

    Brujan E A, Ikeda T, Yoshinaka K and Matsumoto Y 2011 Ultrason. Sonochem. 18 59

    Google Scholar Pub Med

    Zhan S P, Duan H T, Pan L, Tu J S, Jia D, Yang T and Li J 2021 Phys. Chem. Chem. Phys. 23 8446

    Google Scholar Pub Med

    Trummler T, Bryngelson S H, Schmidmayer K, Schmidt S J, Colonius T and Adams N A 2020 J. Fluid Mech. 899 A16

    Google Scholar Pub Med

    Tang H, Liu Y L, Cui P and Zhang A M 2020 J. Hydrodyn. 32 1029

    Google Scholar Pub Med

    Zhao R, Xu R Q, Shen Z H, Lu J and Ni X W 2007 Opt. Laser Technol. 39 968

    Google Scholar Pub Med

    Cui P, Zhang A M and Wang S P 2021 Ocean Eng. 234 109175

    Google Scholar Pub Med

    Cui J, Zhou T R, Huang X and Li Z C 2021 Ultrason. Sonochem. 75 105587

    Google Scholar Pub Med

    Chahine G L, Kapahi A, Choi J K and Hsiao C T 2016 Ultrason. Sonochem. 29 528

    Google Scholar Pub Med

    Ohl C D, Arora M, Dijkink R, Janve V and Lohse D 2006 Appl. Phys. Lett. 89 074102

    Google Scholar Pub Med

    Hung C F and Hwangfu J J 2010 J. Fluid Mech. 651 55

    Google Scholar Pub Med

    Brett J M and Yiannakopolous G 2008 Int. J. Impact Eng. 35 206

    Google Scholar Pub Med

    Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P, Debono S and Charlier H 2005 J. Fluid Mech. 537 387

    Google Scholar Pub Med

    Wu W, Liu M, Zhang A M and Liu Y L 2021 Phys. Rev. Fluids 6 013605

    Google Scholar Pub Med

    Liu J Z, Hong X R, Ma J K and Duan W S 2022 Mod. Phys. Lett. B 36 2250133

    Google Scholar Pub Med

    Taborda M A, Sommerfeld M and Muniz M 2021 Chem. Eng. Sci. 229 116121

    Google Scholar Pub Med

    Dehane A, Merouani S, Hamdaoui O and Alghyamah A 2021 Ultrason. Sonochem. 73 105498

    Google Scholar Pub Med

    Omoteso K A, Roy-Layinde T O, Laoye J A, Vincent U E and McClintock P V E 2021 Ultrason. Sonochem. 70 105346

    Google Scholar Pub Med

    Miyauchi T and Takata S 2024 Phys. Rev. E 110 025102

    Google Scholar Pub Med

    Xu P, Li B, Ren Z B, Liu S H and Zuo Z G 2023 Phys. Rev. Fluids 8 083601

    Google Scholar Pub Med

    Feng K, Eshraghi J, Vlachos P P and Gomez H 2024 Phys. Fluids 36 053305

    Google Scholar Pub Med

    Shaw S J 2006 Phys. Fluids 18 072104

    Google Scholar Pub Med

    Liu J Z and Duan W S 2024 Indian J. Phys. 98 2105

    Google Scholar Pub Med

    Gvozdeva L, Gavrenkov S and Nesterov A 2015 Shock Waves 25 283

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(91) PDF downloads(0) Cited by(0)

Access History

Vibration modes of a bubble close to a boundary

Fund Project: 

Abstract: Using the recently proposed bubble equation, we study the vibration characteristics of a bubble close to a solid boundary. The results indicate that a rigid boundary has an important effect on large-amplitude bubble vibration. Whether the bubble vibration is stable or unstable strongly depends on the distance between the initial bubble center and the solid boundary. Furthermore, it also depends on both the amplitude and the frequency of the external perturbation. It is found that the smaller the distance between the initial bubble center and the solid boundary, the larger the initial bubble radius and the larger both the amplitude and frequency of the external perturbation, the more easily the bubble vibration becomes unstable. It is shown that this unstable bubble vibration is possibly related to the production of a reentrant microjet for the bubble, which suggests a potential method for estimating bubble size and the distance between the bubble center and the solid boundary by exerting an external perturbation with controllable amplitude and frequency on the liquid. Furthermore, the dependence of the natural frequency of the bubble on the external pressure for small-amplitude vibration can reveal the bubble radius and the distance between the bubble center and the solid boundary. In addition, the vibration characteristics of a bubble close to a solid boundary under a periodic external perturbation are revealed. Several bubble vibration modes are identified; the strongest vibration modes are those with the natural frequency and the external vibration frequency.

Reference (70)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return