2025 Volume 34 Issue 5
Article Contents

Guan-Lin Liu(刘冠麟), Ji-Lian Xu(徐辑廉), Peng-Tao Jing(景鹏涛), Jing-Jing Shao(邵京京), Xu Guo(郭旭), Yun-Tao Wu(吴韵涛), Feng Qin(覃凤), Zhen Cheng(程祯), Deming Liu(刘德明), Yang Bao(鲍洋), Hai Xu(徐海), Li-Gong Zhang(张立功), Da Zhan(詹达), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振). 2025: Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride, Chinese Physics B, 34(5): 057801. doi: 10.1088/1674-1056/adbee7
Citation: Guan-Lin Liu(刘冠麟), Ji-Lian Xu(徐辑廉), Peng-Tao Jing(景鹏涛), Jing-Jing Shao(邵京京), Xu Guo(郭旭), Yun-Tao Wu(吴韵涛), Feng Qin(覃凤), Zhen Cheng(程祯), Deming Liu(刘德明), Yang Bao(鲍洋), Hai Xu(徐海), Li-Gong Zhang(张立功), Da Zhan(詹达), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振). 2025: Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride, Chinese Physics B, 34(5): 057801. doi: 10.1088/1674-1056/adbee7

Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride

  • Received Date: 22/01/2025
    Accepted Date: 25/02/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11727902, 12074372, 12174385, 12334014, and 12304112).

  • PACS: 78.30.-j; 78.67.-n; 61.72.J-; 81.05.-t

  • Hexagonal boron nitride (h-BN) has emerged as a promising two-dimensional material for quantum and optoelectronic applications, with its unique ability to host engineered defects enabling single-photon emission and spin manipulation. This study investigates defect formation in h-BN using focused helium ion beam (He$^{+}$ FIB) irradiation and post-annealing treatments. We demonstrate that helium ion irradiation at doses up to $2\times 10^9$ ions/μm$^2$ does not induce phase transitions or amorphization. Spectroscopic analyses, including differential reflectance spectroscopy (DRS), photoluminescence (PL), and Raman spectroscopy, reveal substantial defect formation and structural modifications. Notably, the irradiation induces a softening of in-plane and interlayer phonon modes, characterized by frequency redshifts of 10.5 cm$^{-1}$ and 3.2 cm$^{-1}$, respectively. While high-temperature thermal annealing mitigates lattice defects and facilitates single-photon emission, the E$_{\rm 2g}$ peak width remains 38% broader and the shear mode peak width is 60% broader compared to pre-annealing conditions in the Raman spectra, indicating residual structural degradation. These findings provide insights into defect engineering mechanisms in h-BN, offering guidance for optimizing processing conditions and advancing quantum and optoelectronic device technologies.
  • 加载中
  • Aharonovich I, Englund D and Toth M 2016 Nat. Photonics 10 631

    Google Scholar Pub Med

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B and Basov D N 2019 Nature Reviews Materials 4 552

    Google Scholar Pub Med

    Liu X and Hersam M C 2019 Nature Reviews Materials 4 669

    Google Scholar Pub Med

    Turunen M, Brotons-Gisbert M, Dai Y, Wang Y, Scerri E, Bonato C, Jöns K D, Sun Z and Gerardot B D 2022 Nature Reviews Physics 4 219

    Google Scholar Pub Med

    Aharonovich I, Tetienne J P and Toth M 2022 Nano Lett. 22 9227

    Google Scholar Pub Med

    Zhao X Y, Huang J H, Zhuo Z Y, Xue Y Z, Ding K, Dou X M, Liu J and Sun B Q 2020 Chin. Phys. Lett. 37 044204

    Google Scholar Pub Med

    Toth M and Aharonovich I 2019 Annu. Rev. Phys. Chem. 70 123

    Google Scholar Pub Med

    Wan N H, Lu T J, Chen K C, Walsh M P, Trusheim M E, De Santis L, Bersin E A, Harris I B, Mouradian S L, Christen I R, Bielejec E S and Englund D 2020 Nature 583 226

    Google Scholar Pub Med

    Kianinia M, Xu Z Q, Toth M and Aharonovich I 2022 Appl. Phys. Rev. 9 011306

    Google Scholar Pub Med

    Li C, Fröch J E, Nonahal M, Tran T N, Toth M, Kim S and Aharonovich I 2021 ACS Photonics 8 2966

    Google Scholar Pub Med

    Li C, Mendelson N, Ritika R, Chen Y, Xu Z Q, Toth M and Aharonovich I 2021 Nano Lett. 21 3626

    Google Scholar Pub Med

    Xu X, Martin Z O, Sychev D, Lagutchev A S, Chen Y P, Taniguchi T, Watanabe K, Shalaev V M and Boltasseva A 2021 Nano Lett. 21 8182

    Google Scholar Pub Med

    Wang X J, Fang H H, Li Z Z,Wang D and Sun H B 2024 Light: Science & Applications 13 6

    Google Scholar Pub Med

    Gan L, Zhang D, Zhang R, Zhang Q, Sun H, Li Y and Ning C Z 2022 ACS Nano 16 14254

    Google Scholar Pub Med

    Fournier C, Plaud A, Roux S, Pierret A, Rosticher M, Watanabe K, Taniguchi T, Buil S, Quélin X, Barjon J, Hermier J P and Delteil A 2021 Nat. Commun. 12 3779

    Google Scholar Pub Med

    Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R and Aleman B J 2019 Nano Lett. 19 2121

    Google Scholar Pub Med

    Glushkov E, Macha M, Räth E, Navikas V, Ronceray N, Cheon C Y, Ahmed A, Avsar A, Watanabe K, Taniguchi T, Shorubalko I, Kis A, Fantner G and Radenovic A 2022 ACS Nano 16 3695

    Google Scholar Pub Med

    Liang H, Chen Y, Yang C,Watanabe K, Taniguchi T, Eda G and Bettiol A A 2022 Advanced Optical Materials 11 2201941

    Google Scholar Pub Med

    Liu G L, Wu X Y, Jing P T, Cheng Z, Zhan D, Bao Y, Yan J X, Xu H, Zhang L G, Li B H, Liu K W, Liu L and Shen D Z 2023 Advanced Optical Materials 12 2302083

    Google Scholar Pub Med

    Sarkar S, Xu Y, Mathew S, Lal M, Chung J Y, Lee H Y, Watanabe K, Taniguchi T, Venkatesan T and Gradečak S 2023 Nano Lett. 24 43

    Google Scholar Pub Med

    Das S, Melendez A L, Kao I H, García-Monge J A, Russell D, Li J, Watanabe K, Taniguchi T, Edgar J H, Katoch J, Yang F, Hammel P C and Singh S 2024 Phys. Rev. Lett. 133 166704

    Google Scholar Pub Med

    Venturi G, Chiodini S, Melchioni N, Janzen E, Edgar J H, Ronning C and Ambrosio A 2024 Laser & Photonics Reviews 18 2300973

    Google Scholar Pub Med

    Hlawacek G and Gölzhäuser A 2016 Helium Ion Microscopy Springer International Publishing)

    Google Scholar Pub Med

    Li X L, Han W P, Wu J B, Qiao X F, Zhang J and Tan P H 2017 Advanced Functional Materials 27 1604468

    Google Scholar Pub Med

    Krečmarová M, Andres-Penares D, Fekete L, Ashcheulov P, Molina- Sánchez A, Canet-Albiach R, Gregora I, Mortet V, Martínez-Pastor J P and Sánchez-Royo J F 2019 Nanomaterials 9 1047

    Google Scholar Pub Med

    Niu Y, Gonzalez-Abad S, Frisenda R, Marauhn P, Drüppel M, Gant P, Schmidt R, Taghavi N S, Barcons D, Molina-Mendoza A J, De Vasconcellos S M, Bratschitsch R, Perez De Lara D, Rohlfing M and Castellanos-Gomez A 2018 Nanomaterials 8 725

    Google Scholar Pub Med

    Nguyen M H, Lim S Y, Taniguchi T,Wantanabe K and Cheong H 2021 2D Mater. 8 045004

    Google Scholar Pub Med

    Schué L, Stenger I, Fossard F, Loiseau A and Barjon J 2016 2D Mater. 4 015028

    Google Scholar Pub Med

    Stenger I, Schué L, Boukhicha M, Berini B, Plaçais B, Loiseau A and Barjon J 2017 2D Mater. 4 031003

    Google Scholar Pub Med

    Wang W, Li Z, Marsden A J, Bissett M A and Young R J 2021 2D Mater. 8 035058

    Google Scholar Pub Med

    Zhang H, Horvat J and Lewis R A 2020 2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) Buffalo, NY, USA 1

    Google Scholar Pub Med

    Liang L, Zhang J, Sumpter B G, Tan Q H, Tan P H and Meunier V 2017 ACS Nano 11 11777

    Google Scholar Pub Med

    Pizzi G, Milana S, Ferrari A C, Marzari N and Gibertini M 2021 ACS Nano 15 12509

    Google Scholar Pub Med

    Lin K Q, Holler J, Bauer J M, Parzefall P, Scheuck M, Peng B, Korn T, Bange S, Lupton J M and Schüller C 2021 Advanced Materials 33 2008333

    Google Scholar Pub Med

    Maguire P, Downing C, Jadwiszczak J, O’Brien M, Keane D, McManus J B, Duesberg G S, McEvoy V N N and Zhang H 2019 J. Appl. Phys. 125 064305

    Google Scholar Pub Med

    Lui C H, Ye Z, Keiser C, Xiao X and He R 2014 Nano Lett. 14 4615

    Google Scholar Pub Med

    Lui C H and Heinz T F 2013 Phys. Rev. B 87 121404

    Google Scholar Pub Med

    Hu X, Qiu C,Wang J and Liu D 2021 Advanced Materials Interfaces 9 2101612

    Google Scholar Pub Med

    Hlawacek G, Veligura V, van Gastel R and Poelsema B 2014 J. Vacuum Sci. Technol. B 32 020801

    Google Scholar Pub Med

    Lehtinen O, Dumur E, Kotakoski J, Krasheninnikov A, Nordlund K and Keinonen J 2011 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269 1327

    Google Scholar Pub Med

    Kotakoski J, Jin C H, Lehtinen O, Suenaga K and Krasheninnikov A V 2010 Phys. Rev. B 82 113404

    Google Scholar Pub Med

    Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M and Tour J M 2014 Nano Research 7 1232

    Google Scholar Pub Med

    Cai Q, Scullion D, Falin A, Watanabe K, Taniguchi T, Chen Y, Santos E J G and Li L H 2017 Nanoscale 9 3059

    Google Scholar Pub Med

    Vuong T Q P, Liu S, Van der Lee A, Cuscó R, Artús L, Michel T, Valvin P, Edgar J H, Cassabois G and Gil B 2017 Nat. Mater. 17 152

    Google Scholar Pub Med

    Reich S, Ferrari A C, Arenal R, Loiseau A, Bello I and Robertson J 2005 Phys. Rev. B 71 205201

    Google Scholar Pub Med

    Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2016 Nat. Nanotechnol. 11 37

    Google Scholar Pub Med

    Orofeo C M, Suzuki S, Kageshima H and Hibino H 2013 Nano Research 6 335

    Google Scholar Pub Med

    Sarkar S, Xu Y, Mathew S, Lal M, Chung J Y, Lee H Y, Watanabe K, Taniguchi T, Venkatesan T and Gradečak S 2023 Nano Lett. 24 43

    Google Scholar Pub Med

    Long D A 1977 Raman spectroscopy (New York. McGraw-Hill)

    Google Scholar Pub Med

    Bae S, Sugiyama N, Matsuo T, Raebiger H, Shudo K I and Ohno K 2017 Phys. Rev. Appl. 7 024001

    Google Scholar Pub Med

    Maguire P, Downing C, Jadwiszczak J, O’Brien M, Keane D, McManus J B, Duesberg G S, Nicolosi V, McEvoy N and Zhang H 2019 J. Appl. Phys. 125 064305

    Google Scholar Pub Med

    Wu H, Lin M L, Zhou Y, Zhang X and Tan P H 2023 Anal. Chem. 95 10821

    Google Scholar Pub Med

    Tan P, Han W, Zhao W, Wu Z, Chang K, Wang H, Wang Y, Bonini N, Marzari N and Pugno N 2012 Nat. Mater. 11 294

    Google Scholar Pub Med

    Zhang X, Han W, Wu J, Milana S, Lu Y, Li Q, Ferrari A and Tan P 2013 Phys. Rev. B 87 115413

    Google Scholar Pub Med

    Su X, Gao N, Chen M, Xu H T, Wei X and Di Z F 2019 Chin. Phys. Lett. 36 068501

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(158) PDF downloads(0) Cited by(0)

Access History

Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride

Fund Project: 

Abstract: Hexagonal boron nitride (h-BN) has emerged as a promising two-dimensional material for quantum and optoelectronic applications, with its unique ability to host engineered defects enabling single-photon emission and spin manipulation. This study investigates defect formation in h-BN using focused helium ion beam (He$^{+}$ FIB) irradiation and post-annealing treatments. We demonstrate that helium ion irradiation at doses up to $2\times 10^9$ ions/μm$^2$ does not induce phase transitions or amorphization. Spectroscopic analyses, including differential reflectance spectroscopy (DRS), photoluminescence (PL), and Raman spectroscopy, reveal substantial defect formation and structural modifications. Notably, the irradiation induces a softening of in-plane and interlayer phonon modes, characterized by frequency redshifts of 10.5 cm$^{-1}$ and 3.2 cm$^{-1}$, respectively. While high-temperature thermal annealing mitigates lattice defects and facilitates single-photon emission, the E$_{\rm 2g}$ peak width remains 38% broader and the shear mode peak width is 60% broader compared to pre-annealing conditions in the Raman spectra, indicating residual structural degradation. These findings provide insights into defect engineering mechanisms in h-BN, offering guidance for optimizing processing conditions and advancing quantum and optoelectronic device technologies.

Reference (55)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return