2025 Volume 34 Issue 6
Article Contents

Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军). 2025: Morphology-tuned phase transition of MnO2 nanorods under high pressure, Chinese Physics B, 34(6): 066105. doi: 10.1088/1674-1056/adc192
Citation: Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军). 2025: Morphology-tuned phase transition of MnO2 nanorods under high pressure, Chinese Physics B, 34(6): 066105. doi: 10.1088/1674-1056/adc192

Morphology-tuned phase transition of MnO2 nanorods under high pressure

  • Received Date: 06/02/2025
    Accepted Date: 15/03/2025
  • Fund Project:

    We would like to thank Beijing Synchrotron Radiation Facility technical support groups. Project supported by China Postdoctoral Science Foundation (Grant No. 2023M742049), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515110844), and the Innovative Training Program for College Students (Grant No. 20249076).

  • PACS: 61.50.Ks; 91.60.Gf; 81.10.-h; 64.60.-i

  • The structural phase transition of MnO$_{2}$ nanorods was investigated using in situ high pressure synchrotron x-ray diffraction (XRD) and transmission electron microscopy (TEM). At pressures exceeding 10.9 GPa, a second-order structural phase transition from tetragonal to orthogonal, which was accompanied by fine-scale crystal twinning phenomena, was observed in MnO$_{2}$ nanorods. On account of the significant contribution of surface energy, the phase transition pressure exhibited appreciable hysteresis compared with the bulk counterparts, suggesting the enhanced structural stability of nanorod morphology. These findings reveal that the size and morphology exhibit a manifest correlation with the high pressure behavior of MnO$_{2}$ nanomaterials, providing useful insights into the intricate interplay between structure and properties.
  • 加载中
  • Aric‘o A S, Bruce P, Scrosati B, Tarascon J M and Van S W 2005 Nat. Mater. 4 366

    Google Scholar Pub Med

    Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225

    Google Scholar Pub Med

    Roduner E 2006 Chem. Soc. Rev. 35 583

    Google Scholar Pub Med

    Li T, Wang S, Chen X, Chen C, Fang Y and Yang Z 2024 Chin. Phys. B 33 66401

    Google Scholar Pub Med

    Chen J, Lv X, Li S, Dan Y, Huang Y and Cui T 2024 Chin. Phys. B 33 67104

    Google Scholar Pub Med

    Wang S, Zhao X, Hu K, Feng B, Hou X, Zhang Y, Liu S, Shang Y, Liu Z, Yao M and Liu B 2024 Chin. Phys. B 33 98104

    Google Scholar Pub Med

    Li Q, Cheng B, Tian B, Liu R, Liu B, Wang F, Chen Z, Zou B, Cui T and Liu B 2014 RSC Adv. 4 12873

    Google Scholar Pub Med

    Yan X, Ren X, Zhu S, Van G D, Wang L, Zhao Y and Wang S 2021 Phys. Rev. B 103 L140103

    Google Scholar Pub Med

    Wang L, YangW, Ding Y, Ren Y, Xiao S, Liu B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G, Hemley R J, Mao W and Mao H 2010 Phys. Rev. Lett. 105 095701

    Google Scholar Pub Med

    Das P P, Devi P S, Blom D A, Vogt T and Lee Y 2019 ACS Omega 4 10539

    Google Scholar Pub Med

    Li Z, Liu B, Yu S, Wang J, Li Q, Zou B, Cui T, Liu Z, Chen Z and Liu J 2011 J. Phys. Chem. C 115 357

    Google Scholar Pub Med

    Yang C, Liu Y, Sun H, Guo D, Li X, Li W, Liu B and Zhang X 2008 Nanotechnology 19 095704

    Google Scholar Pub Med

    Yadav P, Bhaduri A and Thakur A 2023 ChemBioEng. Rev. 10 510

    Google Scholar Pub Med

    Devaraj S and Munichandraiah N 2008 J. Phys. Chem. C 112 4406

    Google Scholar Pub Med

    Gao X, Tian D, Shi Z, Zhang N, Sun R, Liu J, Tsai H S, Xiang X and Feng W 2024 Small 20 2405627

    Google Scholar Pub Med

    Dou X, Chen Z, Zhang C, Li X, Qiao F, Song B, Wang S, Teng H and Lv Z 2024 Chin. Phys. B 33 114202

    Google Scholar Pub Med

    Clendenen R and Drickamer H 1966 J. Chem. Phys. 44 4223

    Google Scholar Pub Med

    Haines J, Léger J and Hoyau S 1995 J. Phys. Chem. Solids 56 965

    Google Scholar Pub Med

    Curetti N, Merli M, Capella S, Benna P and Pavese A 2019 Phys. Chem. Miner. 46 987

    Google Scholar Pub Med

    Yue B, Krug M, Sanchez V C, Merkel S and Hong F 2022 Phys. Rev. Mater. 6 053603

    Google Scholar Pub Med

    Li Y, Wu X, Qin S and Wu Z 2006 Chin. J. High Press. Phys. 20 285

    Google Scholar Pub Med

    Kaya L, Karatum O, Balamur R, Kaleli H N, Önal A, Vanalakar S A, Hasanreisoglu M and Nizamoglu S 2023 Adv. Sci. 10 2301854

    Google Scholar Pub Med

    Song H, Xu L, Chen M, Cui Y, Wu C, Qiu J, Xu L, Cheng G and Hu X 2021 RSC Adv. 11 35494

    Google Scholar Pub Med

    Gaikwad N K, Kulkarni A A, Beknalkar S A, Teli A M and Bhat T S 2024 J. Energy Storage 100 113418

    Google Scholar Pub Med

    Toby B 2001 J. Appl. Crystallogr. 34 210

    Google Scholar Pub Med

    Zhu S, Li L, Liu J,Wang H,Wang T, Zhang Y, Zhang L, Ruoff R S and Dong F 2018 ACS Nano 12 1033

    Google Scholar Pub Med

    Zhan D, Zhang Q, Hu X and Peng T 2013 RSC Adv. 3 5141

    Google Scholar Pub Med

    Wang G, Nie L and Yu S 2012 RSC Adv. 2 6216

    Google Scholar Pub Med

    Baranov A N, Sokolov P S, Tafeenko V A, Lathe C, Zubavichus Y V, Veligzhanin A A, Chukichev M V and Solozhenko V L 2013 Chem. Mater. 25 1775

    Google Scholar Pub Med

    Chen Z, Li G, Zheng H, Shu X, Zou J and Peng P 2017 Appl. Surf. Sci. 420 205

    Google Scholar Pub Med

    Xiao G, Yang X, Zhang X, Wang K, Huang X, Ding Z, Ma Y, Zou G and Zou B 2015 J. Am. Chem. Soc. 137 10297

    Google Scholar Pub Med

    Du X, An C, Chen X, Zhou Y, Zhang M, Wang S, Chen C, Zhou Y, Yang X and Yang Z 2023 Phys. Rev. B 108 014109

    Google Scholar Pub Med

    Tian C, Huang X, Gao Y, Tian F, Liang M, Fang Y, Huang F and Cui T 2023 Phys. Rev. B 108 L180507

    Google Scholar Pub Med

    Yue L, Xu D, Wei Z, Zhao T, Lin T, Tenne R, Zak A, Li Q and Liu B 2022 Materials 15 2838

    Google Scholar Pub Med

    Paris E, Joseph B, Iadecola A, Marini C, Ishii H, Kudo K, Pascarelli S, Nohara M, Mizokawa T and Saini N L 2016 Phys. Rev. B 93 134109

    Google Scholar Pub Med

    Cuartero V, Monteseguro V, Otero de la Roza A, El Idrissi M, Mathon O, Shinmei T, Irifune T and Sanson A 2020 Phys. Chem. Chem. Phys. 22 24299

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(115) PDF downloads(3) Cited by(0)

Access History

Morphology-tuned phase transition of MnO2 nanorods under high pressure

Fund Project: 

Abstract: The structural phase transition of MnO$_{2}$ nanorods was investigated using in situ high pressure synchrotron x-ray diffraction (XRD) and transmission electron microscopy (TEM). At pressures exceeding 10.9 GPa, a second-order structural phase transition from tetragonal to orthogonal, which was accompanied by fine-scale crystal twinning phenomena, was observed in MnO$_{2}$ nanorods. On account of the significant contribution of surface energy, the phase transition pressure exhibited appreciable hysteresis compared with the bulk counterparts, suggesting the enhanced structural stability of nanorod morphology. These findings reveal that the size and morphology exhibit a manifest correlation with the high pressure behavior of MnO$_{2}$ nanomaterials, providing useful insights into the intricate interplay between structure and properties.

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return