2025 Volume 34 Issue 6
Article Contents

Jinkun Wang(王锦坤) and Wu-Ming Liu(刘伍明). 2025: Random flux manipulating topological phase transitions in Chern insulators, Chinese Physics B, 34(6): 067301. doi: 10.1088/1674-1056/adc36a
Citation: Jinkun Wang(王锦坤) and Wu-Ming Liu(刘伍明). 2025: Random flux manipulating topological phase transitions in Chern insulators, Chinese Physics B, 34(6): 067301. doi: 10.1088/1674-1056/adc36a

Random flux manipulating topological phase transitions in Chern insulators

  • Received Date: 24/01/2025
    Accepted Date: 17/03/2025
  • Fund Project:

    We thank helpful discussion with Fadi Sun in Great Bay University. Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1402100) and the National Natural Science Foundation of China (Grant Nos. 12174461, 12234012, 12334012, and 52327808).

  • PACS: 73.20.-r; 73.43.-f; 72.15.Rn; 73.20.At

  • We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from insulating to metallic states, while Anderson localization only arises under the modulation of Anderson disorder. By employing real-space topological invariant methods, we demonstrates that the system undergoes topological phase transitions under different disorder manipulations, whereas random flux modulation uniquely induces topological Anderson insulator phases, with the potential to generate states with opposite Chern numbers. These findings highlight the distinct roles of disorder in shaping the interplay between topology and localization, providing insights into stabilizing topological states and designing robust topological quantum materials.
  • 加载中
  • Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057

    Google Scholar Pub Med

    Verresen R, Thorngren R, Jones N G and Pollmann F 2021 Phys. Rev. X 11 041059

    Google Scholar Pub Med

    Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079

    Google Scholar Pub Med

    Liu Z R, Chen R and Zhou B 2024 Chin. Phys. Lett. 41 047102

    Google Scholar Pub Med

    Madail L, Flannigan S, Marques A M, Daley A J and Dias R G 2019 Phys. Rev. B 100 125123

    Google Scholar Pub Med

    Wang Z, Han Y, Watanabe K, Taniguchi T, Jiang Y and Mao J 2024 Chin. Phys. B 33 067301

    Google Scholar Pub Med

    Wu B, Li N, Chen X L, Ji W X, Wang P J, Zhang S F and Zhang C W 2024 Chin. Phys. B 33 127301

    Google Scholar Pub Med

    Röntgen M, Chen X, Gao W, Pyzh M, Schmelcher P, Pagneux V, Achilleos V and Coutant A 2024 Phys. Rev. B 110 035106

    Google Scholar Pub Med

    Wang Q R and Gu Z C 2018 Phys. Rev. X 8 011055

    Google Scholar Pub Med

    Mahon P T, Lei C and MacDonald A H 2024 Phys. Rev. Res. 6 023289

    Google Scholar Pub Med

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    Google Scholar Pub Med

    Fulga I C, Pikulin D I and Loring T A 2016 Phys. Rev. Lett. 116 257002

    Google Scholar Pub Med

    Fu L 2011 Phys. Rev. Lett. 106 106802

    Google Scholar Pub Med

    Wawer L, Li R and Fleischhauer M 2021 Phys. Rev. A 104 012209

    Google Scholar Pub Med

    Naro·zniak M, Dartiailh M C, Dowling J P, Shabani J and Byrnes T 2021 Phys. Rev. B 103 205429

    Google Scholar Pub Med

    Chen C, Ding X, Qin J, He Y, Luo Y H, Chen M C, Liu C, Wang X L, Zhang W J, Li H, You L X, Wang Z, Wang D W, Sanders B C, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 100502

    Google Scholar Pub Med

    Lahiri S and Basu S 2024 Sci. Rep. 14 1880

    Google Scholar Pub Med

    Gao S Y, Xu S, Li H, Yi C J, Nie S M, Rao Z C, Wang H, Hu Q X, Chen X Z, Fan W H, Huang J R, Huang Y B, Pryds N, Shi M, Wang Z J, Shi Y G, Xia T L, Qian T and Ding H 2021 Phys. Rev. X 11 021016

    Google Scholar Pub Med

    He A L, Ding L R, Zhou Y, Wang Y F and Gong C D 2019 Phys. Rev. B 100 214109

    Google Scholar Pub Med

    Li C A, Zhang S B, Budich J C and Trauzettel B 2022 Phys. Rev. B 106 L081410

    Google Scholar Pub Med

    Huang J and Kang J 2024 Phys. Rev. Mater. 8 074604

    Google Scholar Pub Med

    Kumar A, Chaudhary S and Chandra S 2024 Phys. Rev. Mater. 8 034405

    Google Scholar Pub Med

    Peng T, Hua C B, Chen R, Liu Z R, Xu D H and Zhou B 2021 Phys. Rev. B 104 245302

    Google Scholar Pub Med

    Zhang J, Wan F, Wang X, Ding Y, Liao L, Chen Z, Chen M N and Li Y 2022 Phys. Rev. B 106 184202

    Google Scholar Pub Med

    Zhu W, Teo W X, Li L and Gong J 2021 Phys. Rev. B 103 195414

    Google Scholar Pub Med

    Groth C W, Wimmer M, Akhmerov A R, Tworzydło J and Beenakker C W J 2009 Phys. Rev. Lett. 103 196805

    Google Scholar Pub Med

    Tang L Z, Liu S N, Zhang G Q and Zhang D W 2022 Phys. Rev. A 105 063327

    Google Scholar Pub Med

    Li C, Fu B, Li J and Trauzettel B 2024 arXiv:2411.09780

    Google Scholar Pub Med

    Mildner J, Caio M D, Möller G, Cooper N R and Bhaseen M J 2023 arXiv:2312.16689

    Google Scholar Pub Med

    Qiao Z, Han Y, Zhang L, Wang K, Deng X, Jiang H, Yang S A, Wang J and Niu Q 2016 Phys. Rev. Lett. 117 056802

    Google Scholar Pub Med

    Guo W X and Liu W M 2022 Chin. Phys. B 31 057302

    Google Scholar Pub Med

    Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005

    Google Scholar Pub Med

    Mera B, Zhang A and Goldman N 2022 SciPost Phys. 12 018

    Google Scholar Pub Med

    Vaitiek·enas S, Winkler G W, van Heck B, Karzig T, Deng M T, Flensberg K, Glazman L I, Nayak C, Krogstrup P, Lutchyn R M and Marcus C M 2020 Science 367 eaav3392

    Google Scholar Pub Med

    Moore J E and Balents L 2007 Phys. Rev. B 75 121306

    Google Scholar Pub Med

    Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402

    Google Scholar Pub Med

    Zhao X M, Guo C X, Kou S P, Zhuang L and LiuWM 2021 Phys. Rev. B 104 205131

    Google Scholar Pub Med

    Zhao X M, Guo C X, Yang M L, Wang H, Liu W M and Kou S P 2021 Phys. Rev. B 104 214502

    Google Scholar Pub Med

    Chen R, Chen C Z, Gao J H, Zhou B and Xu D H 2020 Phys. Rev. Lett. 124 036803

    Google Scholar Pub Med

    Pai S and Prem A 2019 Phys. Rev. B 100 155135

    Google Scholar Pub Med

    Osseweijer Z, Eek L, Moustaj A, Fremling M and Smith C M 2024 arXiv:2407.20075

    Google Scholar Pub Med

    Bienias P, Boettcher I, Belyansky R, Kollár A J and Gorshkov A V 2022 Phys. Rev. Lett. 128 013601

    Google Scholar Pub Med

    Urwyler D M, Lenggenhager P M, Boettcher I, Thomale R, Neupert T and Bzdušek T C T 2022 Phys. Rev. Lett. 129 246402

    Google Scholar Pub Med

    Bianco R and Resta R 2011 Phys. Rev. B 84 241106

    Google Scholar Pub Med

    Kitaev A 2006 Ann. Phys. 321 2

    Google Scholar Pub Med

    Liu Z R, Hua C B, Peng T and Zhou B 2022 Phys. Rev. B 105 245301

    Google Scholar Pub Med

    Chen Y K, Liu Q h, Zou B and Zhang Y 2023 Phys. Rev. B 107 054109

    Google Scholar Pub Med

    Brzezińska M, Cook A M and Neupert T 2018 Phys. Rev. B 98 205116

    Google Scholar Pub Med

    Ruihua Fan P Z and Gu Y arXiv.2211.04510

    Google Scholar Pub Med

    Toniolo D 2022 Lett. Math. Phys. 112 126

    Google Scholar Pub Med

    Mitchell N P, Turner A M and Irvine W T M 2021 Phys. Rev. E 104 025007

    Google Scholar Pub Med

    Resta R 1998 Phys. Rev. Lett. 80 1800

    Google Scholar Pub Med

    Lin L, Ke Y, Zhang L and Lee C 2023 Phys. Rev. B 108 174204

    Google Scholar Pub Med

    Continentino M A, Rufo S and Rufo G M 2020 Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory, eds. Ferraz A, Gupta K S, Semenoff G W and Sodano P (Cham: Springer International Publishing) pp. 289-307

    Google Scholar Pub Med

    Ge Y and Rigol M 2017 Phys. Rev. A 96 023610

    Google Scholar Pub Med

    De Tomasi G and Khaymovich I M 2020 Phys. Rev. Lett. 124 200602

    Google Scholar Pub Med

    Oganesyan V and Huse D A 2007 Phys. Rev. B 75 155111

    Google Scholar Pub Med

    Atas Y Y, Bogomolny E, Giraud O and Roux G 2013 Phys. Rev. Lett. 110 084101

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(105) PDF downloads(0) Cited by(0)

Access History

Random flux manipulating topological phase transitions in Chern insulators

Fund Project: 

Abstract: We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from insulating to metallic states, while Anderson localization only arises under the modulation of Anderson disorder. By employing real-space topological invariant methods, we demonstrates that the system undergoes topological phase transitions under different disorder manipulations, whereas random flux modulation uniquely induces topological Anderson insulator phases, with the potential to generate states with opposite Chern numbers. These findings highlight the distinct roles of disorder in shaping the interplay between topology and localization, providing insights into stabilizing topological states and designing robust topological quantum materials.

Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return