2025 Volume 34 Issue 5
Article Contents

Jing Min(闵靖), Xiangchuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Xin Xie(谢馨), Xizhi Wu(吴熙至), Shi-Guo Peng(彭世国), and Kaijun Jiang(江开军). 2025: Shear viscosity of an ultracold Fermi gas in the BCS-BEC crossover, Chinese Physics B, 34(5): 053103. doi: 10.1088/1674-1056/adc403
Citation: Jing Min(闵靖), Xiangchuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Xin Xie(谢馨), Xizhi Wu(吴熙至), Shi-Guo Peng(彭世国), and Kaijun Jiang(江开军). 2025: Shear viscosity of an ultracold Fermi gas in the BCS-BEC crossover, Chinese Physics B, 34(5): 053103. doi: 10.1088/1674-1056/adc403

Shear viscosity of an ultracold Fermi gas in the BCS-BEC crossover

  • Received Date: 31/12/2024
    Accepted Date: 21/03/2025
  • Fund Project:

    Project supported by the National Key R&D Program (Grant No. 2022YFA1404102), the National Natural Science Foundation of China (Grant Nos. U23A2073, 12374250, and 12121004), Chinese Academy of Sciences (Grant No. YJKYYQ20170025), and Hubei Province (Grant No. 2021CFA027).

  • PACS: 31.70.Hq; 34.20.+x; 37.10.Jk

  • We report on the measurement of shear viscosity in an ultracold Fermi gas with variable temperatures and tunable interactions. A quadrupole mode excitation in an isotropic harmonic trap is used to quantify the shear viscosity of the quantum gas within the hydrodynamic regime. The shear viscosity of the system as a function of temperature has been investigated, and the results closely align with calculations in the high-temperature limit utilizing a new definition of the cutoff radius. Through an adiabatic sweep across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover, we find that the minimum value of the shear viscosity, as a function of interaction strength, is significantly shifted toward the BEC side. Furthermore, the behavior of the shear viscosity is asymmetric on both sides of the location of the minimum.
  • 加载中
  • Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215

    Google Scholar Pub Med

    Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885

    Google Scholar Pub Med

    Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    Google Scholar Pub Med

    Rupak G and Schäfer T 2007 Phys. Rev. A 76 053607

    Google Scholar Pub Med

    Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T and Thomas J E 2011 Science 331 58

    Google Scholar Pub Med

    Wlazłowski G, Magierski P and Drut J E 2012 Phys. Rev. Lett. 109 020406

    Google Scholar Pub Med

    Guo H, Wulin D, Chien C C and Levin K 2011 Phys. Rev. Lett. 107 020403

    Google Scholar Pub Med

    Bluhm M and Schaefer T 2016 Phys. Rev. Lett. 116 115301

    Google Scholar Pub Med

    Bluhm M, Hou J and Schäfer T 2017 Phys. Rev. Lett. 119 065302

    Google Scholar Pub Med

    Bruun G 2012 Phys. Rev. A 85 013636

    Google Scholar Pub Med

    Joseph J, Elliott E and Thomas J 2015 Phys. Rev. Lett. 115 020401

    Google Scholar Pub Med

    Kovtun P K, Son D T and Starinets A O 2005 Phys. Rev. Lett. 94 111601

    Google Scholar Pub Med

    Cao C, Elliott E, Wu H and Thomas J 2011 New J. Phys. 13 075007

    Google Scholar Pub Med

    Adams A, Carr L D, Schäfer T, Steinberg P and Thomas J E 2012 New J. Phys. 14 115009

    Google Scholar Pub Med

    Elliott E, Joseph J and Thomas J 2014 Phys. Rev. Lett. 113 020406

    Google Scholar Pub Med

    Wang X, Li X, Arakelyan I and Thomas J 2022 Phys. Rev. Lett. 128 090402

    Google Scholar Pub Med

    Pitaevskii L and Stringari S 2016 Bose-Einstein Condensation and Superfluidity Vol. 164 (Oxford University Press)

    Google Scholar Pub Med

    Shi Z, Li Z, Wang P, Han W, Huang L, Meng Z, Chen L and Zhang J 2023 New J. Phys. 25 023032

    Google Scholar Pub Med

    Stringari S 1996 Phys. Rev. Lett. 77 2360

    Google Scholar Pub Med

    Wang L, Yan X, Min J, Sun D, Xie X, Peng S G, Zhan M and Jiang K 2024 Phys. Rev. Lett. 132 243403

    Google Scholar Pub Med

    Chen Q, Stajic J and Levin K 2005 Phys. Rev. Lett. 95 260405

    Google Scholar Pub Med

    Elliott E, Joseph J and Thomas J 2014 Phys. Rev. Lett. 112 040405

    Google Scholar Pub Med

    Hu H, Minguzzi A, Liu X J and Tosi M 2004 Phys. Rev. Lett. 93 190403

    Google Scholar Pub Med

    Heiselberg H 2004 Phys. Rev. Lett. 93 040402

    Google Scholar Pub Med

    Son D 2007 Phys. Rev. Lett. 98 020604

    Google Scholar Pub Med

    Escobedo M A, Mannarelli M and Manuel C 2009 Phys. Rev. A 79 063623

    Google Scholar Pub Med

    Dusling K and Schäfer T 2013 Phys. Rev. Lett. 111 120603

    Google Scholar Pub Med

    Kinast J, Turlapov A and Thomas J E 2005 Phys. Rev. Lett. 94 170404

    Google Scholar Pub Med

    Cao C, Elliott E, Joseph J, Wu H, Petricka J, Schäfer T and Thomas J E 2011 Science 331 58

    Google Scholar Pub Med

    Bruun G M and Smith H 2007 Phys. Rev. A 75 043612

    Google Scholar Pub Med

    Enss T, Haussmann R and Zwerger W 2011 Annals of Physics 326 770

    Google Scholar Pub Med

    Nishida Y 2019 Annals of Physics 410 167949

    Google Scholar Pub Med

    Hofmann J 2020 Phys. Rev. A 101 013620

    Google Scholar Pub Med

    Kavoulakis G, Pethick C J and Smith H 1998 Phys. Rev. A 57 2938

    Google Scholar Pub Med

    Yan X C, Sun D L, Wang L, Min J, Peng S G and Jiang K J 2021 Chin. Phys. Lett. 38 056701

    Google Scholar Pub Med

    Yan X C, Sun D L, Wang L, Min J, Peng S G and Jiang K J 2022 Chin. Phys. B 31 016701

    Google Scholar Pub Med

    Riedl S, Sánchez Guajardo E, Kohstall C, Altmeyer A, Wright M, Denschlag J H, Grimm R, Bruun G and Smith H 2008 Phys. Rev. A 78 053609

    Google Scholar Pub Med

    Turlapov A, Kinast J, Clancy B, Luo L, Joseph J and Thomas J 2008 Journal of Low Temperature Physics 150 567

    Google Scholar Pub Med

    Thomas J, Kinast J and Turlapov A 2005 Phys. Rev. Lett. 95 120402

    Google Scholar Pub Med

    Ku M J, Sommer A T, Cheuk L W and Zwierlein M W 2012 Science 335 563

    Google Scholar Pub Med

    Altmeyer A, Riedl S, Wright M, Kohstall C, Denschlag J H and Grimm R 2007 Phys. Rev. A 76 033610

    Google Scholar Pub Med

    Kagamihara D and Ohashi Y 2017 Journal of Low Temperature Physics 187 692

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(33) PDF downloads(0) Cited by(0)

Access History

Shear viscosity of an ultracold Fermi gas in the BCS-BEC crossover

Fund Project: 

Abstract: We report on the measurement of shear viscosity in an ultracold Fermi gas with variable temperatures and tunable interactions. A quadrupole mode excitation in an isotropic harmonic trap is used to quantify the shear viscosity of the quantum gas within the hydrodynamic regime. The shear viscosity of the system as a function of temperature has been investigated, and the results closely align with calculations in the high-temperature limit utilizing a new definition of the cutoff radius. Through an adiabatic sweep across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover, we find that the minimum value of the shear viscosity, as a function of interaction strength, is significantly shifted toward the BEC side. Furthermore, the behavior of the shear viscosity is asymmetric on both sides of the location of the minimum.

Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return