2025 Volume 34 Issue 5
Article Contents

Dongyang Feng(冯东阳), Hanyan Cao(曹涵彦), and Pan Zhang(张潘). 2025: Planar: A software for exact decoding quantum error correction codes with planar structure, Chinese Physics B, 34(5): 050311. doi: 10.1088/1674-1056/adcb26
Citation: Dongyang Feng(冯东阳), Hanyan Cao(曹涵彦), and Pan Zhang(张潘). 2025: Planar: A software for exact decoding quantum error correction codes with planar structure, Chinese Physics B, 34(5): 050311. doi: 10.1088/1674-1056/adcb26

Planar: A software for exact decoding quantum error correction codes with planar structure

  • Received Date: 14/03/2025
    Accepted Date: 09/04/2025
  • Fund Project:

    This work is supported by the National Natural Science Foundation of China (Grant Nos. 12325501, 12047503, and 12247104) and the Chinese Academy of Sciences (Grant No. ZDRW-XX-2022-3-02). P. Z. is partially supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301900).

  • PACS: 03.67.Pp; 02.50.-r; 05.10.-a; 05.50.+q

  • Quantum error correction is essential for realizing fault-tolerant quantum computing, where both the efficiency and accuracy of the decoding algorithms play critical roles. In this work, we introduce the implementation of the Planar algorithm, a software framework designed for fast and exact decoding of quantum codes with a planar structure. The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model. Then it utilizes the exact Kac-Ward formula to solve it. In this way, Planar offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure, including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise. Unlike traditional minimum-weight decoders such as minimum-weight perfect matching (MWPM), Planar achieves theoretically optimal performance while maintaining polynomial-time efficiency. In addition, to demonstrate its capabilities, we exemplify the implementation using the rotated surface code, a commonly used quantum error correction code with a planar structure, and show that Planar achieves a threshold of approximately $ p_{\rm uc} \approx 0.109 $ under the depolarizing error model, with a time complexity scaling of $ O(N^{0.69}) $, where $ N $ is the number of spins in the Ising model.
  • 加载中
  • Google Quantum AI 2021 Nature 595 383

    Google Scholar Pub Med

    Google Quantum AI and Collaborators 2024 Nature 638 920

    Google Scholar Pub Med

    Google Quantum AI 2023 Nature 614 676

    Google Scholar Pub Med

    Bluvstein D, Evered S J, Geim A A, Li S H, Zhou H, Manovitz T, Ebadi S, Cain M, Kalinowski M, Hangleiter D, et al. 2024 Nature 626 58

    Google Scholar Pub Med

    Honciuc Menendez D, Ray A and Vasmer M 2024 Phys. Rev. A 109 062438

    Google Scholar Pub Med

    Hong Y, Durso-Sabina E, Hayes D and Lucas A 2024 Phys. Rev. Lett. 133 180601

    Google Scholar Pub Med

    Da Silva M, Ryan-Anderson C, Bello-Rivas J, Chernoguzov A, Dreiling J, Foltz C, Gaebler J, Gatterman T, Hayes D, Hewitt N, et al. 2024 arXiv preprint arXiv: 2404.02280

    Google Scholar Pub Med

    Mayer K, Ryan-Anderson C, Brown N, Durso-Sabina E, Baldwin C H, Hayes D, Dreiling J M, Foltz C, Gaebler J P, Gatterman T M, et al. 2024 arXiv preprint arXiv: 2404.08616

    Google Scholar Pub Med

    Ryan-Anderson C, Bohnet J G, Lee K, Gresh D, Hankin A, Gaebler J, Francois D, Chernoguzov A, Lucchetti D, Brown N C, et al. 2021 Phys. Rev. X 11 041058

    Google Scholar Pub Med

    Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86 032324

    Google Scholar Pub Med

    Campbell E T 2019 Quantum Science and Technology 4 025006

    Google Scholar Pub Med

    Bonilla Ataides J P, Tuckett D K, Bartlett S D, Flammia S T and Brown B J 2021 Nat. Commun. 12 2172

    Google Scholar Pub Med

    Hastings M B and Haah J 2021 Quantum 5 564

    Google Scholar Pub Med

    Fowler A G 2011 Phys. Rev. A 83 042310

    Google Scholar Pub Med

    Bravyi S, Cross A W, Gambetta J M, Maslov D, Rall P and Yoder T J 2024 Nature 627 778

    Google Scholar Pub Med

    Gottesman D 1997 Stabilizer codes and quantum error correction (California Institute of Technology)

    Google Scholar Pub Med

    Higgott O 2022 ACM Transactions on Quantum Computing 3 1

    Google Scholar Pub Med

    Fowler A G 2013 arXiv preprint arXiv: 1310.0863

    Google Scholar Pub Med

    Higgott O, Bohdanowicz T C, Kubica A, Flammia S T and Campbell E T 2023 Phys. Rev. X 13 031007

    Google Scholar Pub Med

    Kolmogorov V 2009 Mathematical Programming Computation 1 43

    Google Scholar Pub Med

    Liyanage N, Wu Y, Deters A and Zhong L 2023 Scalable quantum error correction for surface codes using fpga 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) Vol. 01 pp. 916-927

    Google Scholar Pub Med

    Bohdanowicz T C, Crosson E, Nirkhe C and Yuen H 2019 Tensor networks for exact and approximate maximum likelihood decoding Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (Phoenix AZ USA: ACM) pp. 481-490

    Google Scholar Pub Med

    Piveteau C, Chubb C T and Renes J M 2024 PRX Quantum 5 040303

    Google Scholar Pub Med

    Bravyi S, Suchara M and Vargo A 2014 Phys. Rev. A 90 032326

    Google Scholar Pub Med

    Cao H, Zhao S, Feng D, Shen Z, Yan H, Su T, Sun W, Xu H, Pan F, Yu H, et al. 2025 arXiv preprint arXiv: 2501.03582

    Google Scholar Pub Med

    https://github.com/CHY-i/planar

    Google Scholar Pub Med

    Cao H, Pan F, Wang Y and Zhang P 2023 arXiv preprint arXiv: 2307.09025

    Google Scholar Pub Med

    Chubb C T and Flammia S T 2021 Annales de l’Institut Henri Poincaré D 8 269

    Google Scholar Pub Med

    Bombin H, Andrist R S, Ohzeki M, Katzgraber H G and Martin- Delgado M A 2012 Phys. Rev. X 2 021004

    Google Scholar Pub Med

    Kac M and Ward J C 1952 Phys. Rev. 88 1332

    Google Scholar Pub Med

    Roffe J, White D R, Burton S and Campbell E 2020 Phys. Rev. Res. 2 043423

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(34) PDF downloads(1) Cited by(0)

Access History

Planar: A software for exact decoding quantum error correction codes with planar structure

Fund Project: 

Abstract: Quantum error correction is essential for realizing fault-tolerant quantum computing, where both the efficiency and accuracy of the decoding algorithms play critical roles. In this work, we introduce the implementation of the Planar algorithm, a software framework designed for fast and exact decoding of quantum codes with a planar structure. The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model. Then it utilizes the exact Kac-Ward formula to solve it. In this way, Planar offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure, including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise. Unlike traditional minimum-weight decoders such as minimum-weight perfect matching (MWPM), Planar achieves theoretically optimal performance while maintaining polynomial-time efficiency. In addition, to demonstrate its capabilities, we exemplify the implementation using the rotated surface code, a commonly used quantum error correction code with a planar structure, and show that Planar achieves a threshold of approximately $ p_{\rm uc} \approx 0.109 $ under the depolarizing error model, with a time complexity scaling of $ O(N^{0.69}) $, where $ N $ is the number of spins in the Ising model.

Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return