2025 Volume 34 Issue 6
Article Contents

Mun Kim, Chunlei Zhang, Chenyang Lu, Jacob Burgess, and Can-Ming Hu†. 2025: A two-stage injection locking amplifier based on a cavity magnonic oscillator, Chinese Physics B, 34(6): 067104. doi: 10.1088/1674-1056/add1bf
Citation: Mun Kim, Chunlei Zhang, Chenyang Lu, Jacob Burgess, and Can-Ming Hu†. 2025: A two-stage injection locking amplifier based on a cavity magnonic oscillator, Chinese Physics B, 34(6): 067104. doi: 10.1088/1674-1056/add1bf

A two-stage injection locking amplifier based on a cavity magnonic oscillator

  • Received Date: 27/03/2025
    Accepted Date: 27/04/2025
  • Fund Project:

    This work has been funded by NSERC Discovery Grants, NSERC Discovery Accelerator Supplements, Innovation Proof-of-Concept Grant of Research Manitoba, and Faculty of Science Research Innovation and Commercialization Grant of University of Manitoba (C.-M.H.).

  • PACS: 71.36.+c; 84.30.Le; 84.40.Dc; 42.82.Fv

  • A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator (cavity) and spin excitations (magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise. Like many low phase noise oscillators, a cavity magnonic oscillator faces the challenge that its narrow resonance profile is not well suited for injection locking amplification. This work presents an improved design for such an oscillator configured as an injection locking amplifier (ILA) with an extended lock range. The proposed design features a two-stage architecture, consisting of a pre-amplification oscillator and a cavity magnonic oscillator, separated by an isolator to prevent backward locking. By optimizing the circuit parameters of each stage, the proposed design achieved an order of magnitude increase in lock range, when compared to its predecessors, all while preserving the phase noise quality of the input, making it well-suited for narrowband, sensitive signal amplification. Furthermore, this work provides a method for using oscillators with high spectral purity as injection locking amplifiers.
  • 加载中
  • Haidar M, Awad A A, Dvornik M, Khymyn R, Houshang A and Å kerman J 2019 Nat. Commun. 10 2362

    Google Scholar Pub Med

    Chen T, Dumas R K, Eklund A, Muduli P K, Houshang A, Awad A A, Durrenfeld P, Malm B G, Rusu A and Å kerman J 2016 Proc. IEEE 104 1919

    Google Scholar Pub Med

    Zheng X and Zhou Y 2015 Solid State Phenom. 232 147

    Google Scholar Pub Med

    Jiang S, Yao L, Wang S, Wang D, Liu L, Kumar A, Awad A A, Litvinenko A, Ahlberg M, Khymyn R, et al. 2024 Appl. Phys. Rev. 11 041309

    Google Scholar Pub Med

    Prokopenko O, Bankowski E, Meitzler T, Tiberkevich V and Slavin A 2011 IEEE Magn. Lett. 2 3000104

    Google Scholar Pub Med

    Ollivier P M 1972 IEEE J. Solid-State Circuits 7 54

    Google Scholar Pub Med

    Li Y, ZhangW, Tyberkevych V, KwokWK, Hoffmann A and Novosad V 2020 J. Appl. Phys. 128 13

    Google Scholar Pub Med

    Hou J T, Zhang P and Liu L 2021 Phys. Rev. Appl. 16 034034

    Google Scholar Pub Med

    Yao B, Gui Y S, Rao J W, Zhang Y H, Lu W and Hu C M 2023 Phys. Rev. Lett. 130 146702

    Google Scholar Pub Med

    Lu C, Kim M, Zhang C and Hu C M 2024 J. Appl. Phys. 136 053903

    Google Scholar Pub Med

    Kim M, Zhang C, Lu C and Hu C M 2024 Appl. Phys. Lett. 124 114103

    Google Scholar Pub Med

    Adler R 1946 Proc. IRE 34 351

    Google Scholar Pub Med

    Chen H W, Lu H C and Huang T W 2005 Asia-Pacific Microw. Conf. Proc. 44

    Google Scholar Pub Med

    Saputra N and Long J R 2008 STW Proc. ProRISC 239

    Google Scholar Pub Med

    Girlando G and Palmisano G 1999 IEEE Trans. Circuits Syst. II 46 1388

    Google Scholar Pub Med

    Razavi B 2004 IEEE J. Solid-State Circuits 39 1415

    Google Scholar Pub Med

    Paciorek L 1965 Proc. IEEE 53 1723

    Google Scholar Pub Med

    Zdanowski M and Barlik R 2017 Bull. Pol. Acad. Sci.: Tech. Sci. 65 107

    Google Scholar Pub Med

    Garg R and Bahl I 1979 IEEE Trans. Microw. Theory Techn. 27 700

    Google Scholar Pub Med

    Paul C R 2007 Analysis of Multiconductor Transmission Lines (New York: Wiley) p. 146

    Google Scholar Pub Med

    Mooney D and Bayuk F 1983 IEEE Trans. Microw. Theory Techn. 31 171

    Google Scholar Pub Med

    Lin C H and Chang H Y 2012 IEEE Trans. Microw. Theory Techn. 60 3232

    Google Scholar Pub Med

    Ikeda H and Itoh Y 2018 IEEE Trans. Microw. Theory Techn. 66 3315

    Google Scholar Pub Med

    Lin J, Boon C C, Yi X and Feng G 2015 IEEE Microw. Wireless Compon. Lett. 25 52

    Google Scholar Pub Med

    Oh H S, Song T, Yoon E and Kim C K 2006 IEEE Microw. Wireless Compon. Lett. 16 173

    Google Scholar Pub Med

    Lindstrand J, Bryant C, Tormanen M and Sjoland H 2011 Proc. ESSCIRC 299

    Google Scholar Pub Med

    Lin J, Boon C C, Yi X and Lim W M 2014 IEEE Microw. Wireless Compon. Lett. 24 182

    Google Scholar Pub Med

    Zhang C, Kim M,Wang J and Hu C M 2024 Phys. Rev. Appl. 22 014034

    Google Scholar Pub Med

    Kalia S, Elbadry M, Sadhu B, Patnaik S, Qiu J and Harjani R 2011 IEEE RFIC Symp. 1 DOI:

    Google Scholar Pub Med

    Council N R, Earth D on, Studies L, Atmospheric Sciences B on and Weather Radar Technology Beyond NEXRAD C on 2002 Weather Radar Technology Beyond NEXRAD (Washington D. C.: National Academies Press)

    Google Scholar Pub Med

    Ruthroff C L 1968 Bell Syst. Tech. J. 47 1653

    Google Scholar Pub Med

    Edmonson P, Smith P and Campbell C 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 631

    Google Scholar Pub Med

    Li Y, Polakovic T, Wang Y L, Xu J, Lendinez S, Zhang Z, Ding J, Khaire T, Saglam H, Divan R, Pearson J, KwokWK, Xiao Z, Novosad V, Hoffmann A and Zhang W 2019 Phys. Rev. Lett. 123 107701

    Google Scholar Pub Med

    Hou J T and Liu L 2019 Phys. Rev. Lett. 123 107702

    Google Scholar Pub Med

    Li Y, Lo T H, Lim J, Pearson J E, Divan R, Zhang W, Welp U, Kwok W K, Hoffmann A and Novosad V 2023 Appl. Phys. Lett. 123 022406

    Google Scholar Pub Med

    Zhu N, Han X, Zou C L, Xu M and Tang H X 2020 Phys. Rev. A 101 043842

    Google Scholar Pub Med

    Boiko J, Tolubko V, Barabash O, Eromenko O and Havrylko Y 2019 Telkomnika (Telecommun. Comput. Electron. Control) 17 2025

    Google Scholar Pub Med

    Mallet F, Ong F. R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D and Esteve D 2009 Nat. Phys. 5 791

    Google Scholar Pub Med

    Eisenach E R, Barry J F, OKeeffe M F, Schloss J M, Steinecker M H, Englund D R, Braje D A, et al. 2021 Nat. Commun. 12 1357

    Google Scholar Pub Med

    Wang F K, Li C J, Hsiao C H, Horng T S, Lin J, Peng K C, Jau J K, Li J Y and Chen C C 2010 IEEE Trans. Microwave Theory Tech. 58 4112

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(92) PDF downloads(0) Cited by(0)

Access History

A two-stage injection locking amplifier based on a cavity magnonic oscillator

Fund Project: 

Abstract: A cavity magnonic oscillator uses the coupling of a planar transmission line oscillator (cavity) and spin excitations (magnons) in a ferrimagnetic material to achieve superior frequency stability and reduced phase noise. Like many low phase noise oscillators, a cavity magnonic oscillator faces the challenge that its narrow resonance profile is not well suited for injection locking amplification. This work presents an improved design for such an oscillator configured as an injection locking amplifier (ILA) with an extended lock range. The proposed design features a two-stage architecture, consisting of a pre-amplification oscillator and a cavity magnonic oscillator, separated by an isolator to prevent backward locking. By optimizing the circuit parameters of each stage, the proposed design achieved an order of magnitude increase in lock range, when compared to its predecessors, all while preserving the phase noise quality of the input, making it well-suited for narrowband, sensitive signal amplification. Furthermore, this work provides a method for using oscillators with high spectral purity as injection locking amplifiers.

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return