2025 Volume 34 Issue 8
Article Contents

Junming Liu(刘峻铭), Liqiang Liu(刘励强), Lihong Hong(洪丽红), and Zhiyuan Li(李志远). 2025: Simultaneous second and third harmonics generation in periodically poled lithium niobate: Coupling and competition, Chinese Physics B, 34(8): 084203. doi: 10.1088/1674-1056/add24a
Citation: Junming Liu(刘峻铭), Liqiang Liu(刘励强), Lihong Hong(洪丽红), and Zhiyuan Li(李志远). 2025: Simultaneous second and third harmonics generation in periodically poled lithium niobate: Coupling and competition, Chinese Physics B, 34(8): 084203. doi: 10.1088/1674-1056/add24a

Simultaneous second and third harmonics generation in periodically poled lithium niobate: Coupling and competition

  • Received Date: 31/03/2025
    Accepted Date: 27/04/2025
  • Fund Project:

    Project supported by the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001), the National Natural Science Foundation of China (Grant No. 12434016), the National Key Research and Development Program of China (Grant No. 2023YFA1406900), and the Fund of the National Postdoctoral Researcher Program (Grant No. GZB20240785).

  • PACS: 42.65.-k; 42.65.Ky; 42.70.Mp

  • Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them, which is restricted in application due to the complexity of the optical path and the bulkiness of the device. In this work, we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves (SHW) and the third harmonic waves (THW) in a single nonlinear crystal. Through analyzing both small-signal and large-signal regimes, we reveal the complex coupling mechanisms between SHW and THW generation processes. Using periodically poled lithium niobate as an example, we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power. This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.
  • 加载中
  • Agrawal G 2013 Nonlinear Fiber Optics, 5th ed. (Oxford: Elsevier)

    Google Scholar Pub Med

    Wang G, Lu J, Cui D, Xu Z, Wu Y, Fu P, Guan X and Chen C 2002 Opt. Commun. 209 481

    Google Scholar Pub Med

    Lenhardt F, Nebel A, Knappe R, Nittmann M, Bartschke J and L’huillier J 2010 Presented at the Conference on Lasers and Electro- Optics 2010, (California: San Jose)

    Google Scholar Pub Med

    Konforty N, Cohen M, Segal O, Plotnik Y and Segev M 2024 Light: Sci. Appl. 14 152

    Google Scholar Pub Med

    Mu X and Ding Y 2001 Opt. Lett. 26 623

    Google Scholar Pub Med

    Huang C and Zhu Y 2005 Phys. Status Solidi B 242 1694

    Google Scholar Pub Med

    Feve J, Boulanger B and Guillien Y 2000 Opt. Lett. 25 1373

    Google Scholar Pub Med

    Hsu C, Lai J, Hsu C, Huang Y, Wu K and Chou M 2019 Presented at the Conference on Nonlinear Frequency Generation and Conversion - Materials and Devices XVIII, San Francisco, CA

    Google Scholar Pub Med

    WangW, Cong Z, Chen X, Zhang X, Qin Z, Tang G, Li N,Wang C and Lu Q 2014 Opt. Lett. 39 3706

    Google Scholar Pub Med

    Antipov O, Kolker D, Dobrynin A, Zav’yalov A, Getmanovskiy Y, Sharkov V, Chuvakova M, Akhmathanov A and Shur V 2022 International Conference Laser Optics (ICLO) 1 1

    Google Scholar Pub Med

    Zukauskas A, Thilmann N, Pasiskevicius V, Laurell F and Canalias C 2009 Appl. Phys. Lett. 95 191103

    Google Scholar Pub Med

    Antipov O, Kolker D, Dobrynin A, Getmanovskii Y, Sharkov V, Chuvakova M, Akhmatkhanov A, Shur V, Shestakova I and Larin S 2022 Quantum Electron. 52 254

    Google Scholar Pub Med

    Feng Z, Lan J, Li W, Liu X, Yu C, Li J and Liu Y 2020 Phys. Plasmas 27 023302

    Google Scholar Pub Med

    Lu J, Surya J, Liu X, Xu Y and Tang H 2019 Opt. Lett. 44 1492

    Google Scholar Pub Med

    Yu M, Shao L, Okawachi Y, Gaeta A, and Loncar 2020 Conference on Lasers and Electro-Optics (CLEO) STu4H 1

    Google Scholar Pub Med

    Genier E, Grelet S, Engelsholm R, Bowen P, Moselund P, Bang O, Dudley J, and Sylvestre T 2022 Opt. Lett. 47 2064

    Google Scholar Pub Med

    Hong L, Hu C, Liu Y, He H, Liu L, Wei Z and Li Z 2023 PhotoniX 4 11

    Google Scholar Pub Med

    Chen B, Zhang C, Hu C, Liu R and Li Z 2015 Phys. Rev. Lett. 115 083902

    Google Scholar Pub Med

    Giordmaine J 1962 Phys. Rev. Lett. 8 19

    Google Scholar Pub Med

    Maker P, Terhune R, Nisenoff M and Savage C 1962 Phys. Rev. Lett. 8 21

    Google Scholar Pub Med

    Zhang X, Wang Z, Wang G, Zhu Y, Xu Z and Chen C 2009 Opt. Lett. 34 1342

    Google Scholar Pub Med

    Armstrong J, Bloembergen N, Ducuing J and Pershan P 1962 Phys. Rev. 127 1918

    Google Scholar Pub Med

    Fejer M, Magel G, Jundt D and Byer R 1992 IEEE J. Quantum Electron. 28 2631

    Google Scholar Pub Med

    Ren M and Li Z 2011 Europhys. Lett. 94 44003

    Google Scholar Pub Med

    Demkin A, Baranov A, Ahtyamov V and Myasnikov D 2016 Presented at the 2016 International Conference Laser Optics (LO)

    Google Scholar Pub Med

    Chen Y, Zhu Y, Qin Y, Zhang C, Zhu S and Ming N 2000 J. Phys.: Condens. Matter 12 529

    Google Scholar Pub Med

    Chen B, Ren M, Liu R, Zhang C, Sheng Y, Ma B and Li Z 2014 Light: Sci. Appl. 3 e189

    Google Scholar Pub Med

    Tao Y, Zhu W, Zhang Y, Ma J, Wang J, Yuan P, Zhang H, Zhu H and Qian L 2024 Chin. Opt. Lett. 22 011901

    Google Scholar Pub Med

    Li M, Hong L and Li Z 2022 Research 2022 9871729

    Google Scholar Pub Med

    Chen B, Hong L, Hu C and Li Z 2021 Research 2021 1539730

    Google Scholar Pub Med

    Shen Y 1977 Nonlinear Infrared Generation (Berlin: Springer)

    Google Scholar Pub Med

    Hu C, He H, Chen B, Wei Z and Li Z 2017 J. Appl. Phys. 122 243105

    Google Scholar Pub Med

    Hong L, Chen B, Hu C and Li Z 2021 J. Appl. Phys. 129 233101

    Google Scholar Pub Med

    Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(27) PDF downloads(0) Cited by(0)

Access History

Simultaneous second and third harmonics generation in periodically poled lithium niobate: Coupling and competition

Fund Project: 

Abstract: Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them, which is restricted in application due to the complexity of the optical path and the bulkiness of the device. In this work, we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves (SHW) and the third harmonic waves (THW) in a single nonlinear crystal. Through analyzing both small-signal and large-signal regimes, we reveal the complex coupling mechanisms between SHW and THW generation processes. Using periodically poled lithium niobate as an example, we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power. This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.

Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return