2025 Volume 34 Issue 8
Article Contents

Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). 2025: Molecular simulation study on phase separation of immunoglobulin G, Chinese Physics B, 34(8): 088701. doi: 10.1088/1674-1056/add50b
Citation: Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). 2025: Molecular simulation study on phase separation of immunoglobulin G, Chinese Physics B, 34(8): 088701. doi: 10.1088/1674-1056/add50b

Molecular simulation study on phase separation of immunoglobulin G

  • Received Date: 02/04/2025
    Accepted Date: 28/04/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12222506, 12347102, and 12174184).

  • PACS: 87.10.Tf; 64.75.-g; 87.15.-v; 87.15.A-

  • Understanding the liquid-liquid phase separation (LLPS) of immunoglobulin G (IgG) is crucial, as it profoundly influences IgG's biological activity and stability. In this study, we employed coarse-grained molecular dynamics simulations to systematically investigate the phase separation behavior of IgG. We first constructed two types of IgG models: all-pair IgG model and partial-pair IgG model, and compared the coexistence curve from our simulations with experimental data. Our results showed that the partial-pair IgG model aligns better with the experimental critical temperature and critical density. Using this model, we then calculated the temperature-dependent variations of IgG's radius of gyration, surface tension, viscosity, etc. More importantly, we demonstrated that variations in the interaction strengths among IgG molecules significantly influence their phase separation behavior. Specifically, a higher standard deviation of interaction strength at different temperatures is found to lead to more stable phase-separated states. Furthermore, we observed that the introduction of repulsive polymers and strongly attractive polymers consistently enhances IgG phase separation, while weakly attractive polymers exhibit a dual regulatory effect on the phase separation. Overall, this study provides valuable insights into the mechanisms governing IgG phase behavior, with potential implications for optimizing biopharmaceutical products.
  • 加载中
  • Edelman G M 1973 Science 180 830

    Google Scholar Pub Med

    Rosenberg A S 2006 AAPS J. 8 59

    Google Scholar Pub Med

    Vidarsson G, Dekkers G and Rispens T 2014 Front. Immunol. 5 520

    Google Scholar Pub Med

    Hatch H W, Bergonzo C, Blanco M A, Yuan G, Grudinin S, Lund M, Curtis J E, Grishaev A V, Liu Y and Shen V K 2024 J. Chem. Phys. 161 094113

    Google Scholar Pub Med

    Dumetz A C, Chockla A M, Kaler EWand Lenhoff A M 2008 Biophys. J. 94 570

    Google Scholar Pub Med

    Mason B D, Zhang-Van Enk J, Zhang L, Remmele R L Jr and Zhang J 2010 Biophys. J. 99 3792

    Google Scholar Pub Med

    Yan Z S, Ma Y Q and Ding H M 2024 J. Chem. Phys. 160 064907

    Google Scholar Pub Med

    Ren C L, Shan Y, Zhang P, Ding H M and Ma Y Q 2022 Sci. Adv. 8 eabo7885

    Google Scholar Pub Med

    Pantuso E, Mastropietro T F, Briuglia M L, Gerard C J J, Curcio E, Ter Horst J H, Nicoletta F P and Di Profio G 2020 Sci. Rep. 10 8902

    Google Scholar Pub Med

    Larson N R,Wei Y, Cruz T A, Esfandiary R, Kalonia C K, Forrest M L and Middaugh C R 2023 J. Pharm. Sci. 112 680

    Google Scholar Pub Med

    Likhtman A E 2005 Macromolecules 38 6128

    Google Scholar Pub Med

    Nikoubashman A and Howard M P 2017 Macromolecules 50 8279

    Google Scholar Pub Med

    Demeule B, Lawrence M J, Drake A F, Gurny R and Arvinte T 2007 Biochim. Biophys. Acta 1774 146

    Google Scholar Pub Med

    Dorsaz N, Thurston G M, Stradner A, Schurtenberger P and Foffi G 2011 Soft Matter 7 1763

    Google Scholar Pub Med

    Sibanda N, Shanmugam R K and Curtis R 2023 Mol. Pharm. 20 2662

    Google Scholar Pub Med

    Herling T W, Invernizzi G, Ausserwöger H, Bjelke J R, Egebjerg T, Lund S, Lorenzen N and Knowles T P J 2023 Proc. Natl. Acad. Sci. USA 120 e2306700120

    Google Scholar Pub Med

    Ausserwöger H, Krainer G, Welsh T J, Thorsteinson N, De Csilléry E, Sneideris T, Schneider M M, Egebjerg T, Invernizzi G, Herling T W, Lorenzen N and Knowles T P J 2023 Proc. Natl. Acad. Sci. USA 120 e2210332120

    Google Scholar Pub Med

    Chen S, Lau H, Brodsky Y, Kleemann G R and Latypov R F 2010 Protein Sci. 19 1191

    Google Scholar Pub Med

    Nishi H, Miyajima M, Nakagami H, Noda M, Uchiyama S and Fukui K 2010 Pharm. Res. 27 1348

    Google Scholar Pub Med

    Ahamed T, Esteban B N A, Ottens M, Van Dedem G W K, Van Der Wielen L A M, Bisschops M A T, Lee A, Pham C and Thömmes J 2007 Biophys. J. 93 610

    Google Scholar Pub Med

    Mason B D, Zhang L, Remmele R L Jr and Zhang J 2011 J. Pharm. Sci. 100 4587

    Google Scholar Pub Med

    Nishi H, Miyajima M,Wakiyama N, Kubota K, Hasegawa J, Uchiyama S and Fukui K 2011 J. Biosci. Bioeng. 112 326

    Google Scholar Pub Med

    Trilisky E, Gillespie R, Osslund T D and Vunnum S 2011 Biotechnol. Prog. 27 1054

    Google Scholar Pub Med

    Wang Y, Lomakin A, Latypov R F, Laubach J P, Hideshima T, Richardson P G, Munshi N C, Anderson K C and Benedek G B 2013 J. Chem. Phys. 139 121904

    Google Scholar Pub Med

    Zheng Y, Li Q, Freiberger M I, Song H, Hu G, Zhang M, Gu R and Li J 2024 J. Chem. Inf. Model. 64 6768

    Google Scholar Pub Med

    Janc T, Korb J P, Lukšič M, Vlachy V, Bryant R G, Mériguet G, Malikova N and Rollet A L 2021 J. Phys. Chem. B 125 8673

    Google Scholar Pub Med

    Rao V S, Srinivas K, Sujini G N and Kumar G N S 2014 J. Proteomics 2014 147648

    Google Scholar Pub Med

    Jones S and Thornton J M 1996 Proc. Natl. Acad. Sci. USA 93 13

    Google Scholar Pub Med

    Nooren I M A and Thornton J M 2003 Embo J. 22 3486

    Google Scholar Pub Med

    Thompson R W Jr, Latypov R F, Wang Y, Lomakin A, Meyer J A, Vunnum S and Benedek G B 2016 J. Chem. Phys. 145 185101

    Google Scholar Pub Med

    Zhang F, Skoda M W A, Jacobs R M J, Martin R A, Martin C M and Schreiber F 2007 J. Phys. Chem. B 111 251

    Google Scholar Pub Med

    Antosiewicz J, Mccammon J A and Gilson M K 1994 J. Mol. Biol. 238 415

    Google Scholar Pub Med

    Voth G A 2017 Acc. Chem. Res. 50 594

    Google Scholar Pub Med

    Heyman B 2003 Immunol. Lett. 88 157

    Google Scholar Pub Med

    Brandt J P, Patapoff T W and Aragon S R 2010 Biophys. J. 99 905

    Google Scholar Pub Med

    Chaudhri A, Zarraga I E, Kamerzell T J, Brandt J P, Patapoff TW, Shire S J and Voth G A 2012 J. Phys. Chem. B 116 8045

    Google Scholar Pub Med

    Davies D R and Cohen G H 1996 Proc. Natl. Acad. Sci. USA 93 7

    Google Scholar Pub Med

    Wilson I A and Stanfield R L 1994 Curr. Opin. Struct. Biol. 4 857

    Google Scholar Pub Med

    Abhinandan K R and Martin A C R 2008 Mol. Immunol. 45 3832

    Google Scholar Pub Med

    Chothia C, Lesk A M, Tramontano A, Levitt M, Smith-Gill S J, Air G, Sheriff S, Padlan E A, Davies D, Tulip W R, Colman P M, Spinelli S, Alzari P M and Poljak R J 1989 Nature 342 877

    Google Scholar Pub Med

    Sivasubramanian A, Sircar A, Chaudhury S and Gray J J 2009 Proteins 74 497

    Google Scholar Pub Med

    Oganesyan V, Damschroder M M, Leach W, Wu H and Dallácqua W F 2008 Mol. Immunol. 45 1872

    Google Scholar Pub Med

    Oganesyan V, Damschroder M M, Woods R M, Cook K E, Wu H and Dallácqua W F 2009 Mol. Immunol. 46 1750

    Google Scholar Pub Med

    Hirschmann F, Lopez H, Roosen-Runge F, Seydel T, Schreiber F and Oettel M 2018 J. Chem. Phys. 148 084112

    Google Scholar Pub Med

    Harris J M, Martin N E and ModiM2001 Clin. Pharmacokinet. 40 539

    Google Scholar Pub Med

    Brzezinski M, Argudo P G, Scheidt T, Yu M, Lemke E A, Michels J J and Parekh S H 2023 bioRxiv 570970

    Google Scholar Pub Med

    Chudoba R, Heyda J and Dzubiella J 2017 J. Chem. Theory Comput. 13 6317

    Google Scholar Pub Med

    Wang Y, Latypov R F, Lomakin A, Meyer J A, Kerwin B A, Vunnum S and Benedek G B 2014 Mol. Pharm. 11 1391

    Google Scholar Pub Med

    Fetahaj Z, Jaworek M W, Oliva R and Winter R 2022 Chem. Eur. J. 28 e202201658

    Google Scholar Pub Med

    Cruz R D C, Martins R J, Cardoso M J E D M and Barcia O E 2009 J. Solut. Chem. 38 957

    Google Scholar Pub Med

    Silmore K S, Howard M P and Panagiotopoulos A Z 2017 Mol. Phys. 115 320

    Google Scholar Pub Med

    Dignon G L, Zheng W, Kim Y C, Best R B and Mittal J 2018 PLoS Comput. Biol. 14 e1005941

    Google Scholar Pub Med

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171

    Google Scholar Pub Med

    Wang H, Kelley F M, Milovanovic D, Schuster B S and Shi Z 2021 Biophys. Rep. 1 100011

    Google Scholar Pub Med

    Alshareedah I, Thurston G M and Banerjee P R 2021 Biophys. J. 120 1161

    Google Scholar Pub Med

    Kirkwood J G and Buff F P 1949 J. Chem. Phys. 17 338

    Google Scholar Pub Med

    Lee H, De Vries A H, Marrink S J and Pastor R W 2009 J. Phys. Chem. B 113 13186

    Google Scholar Pub Med

    Humbert M T, Zhang Y and Maginn E J 2019 J. Chem. Inf. Model. 59 1301

    Google Scholar Pub Med

    Tejedor A R, Collepardo-Guevara R, Ramírez J and Espinosa J R 2023 J. Phys. Chem. B 127 4441

    Google Scholar Pub Med

    Ramírez J, Sukumaran S K, Vorselaars B and Likhtman A E 2010 J. Chem. Phys. 133 154103

    Google Scholar Pub Med

    Boudara V a H, Read D J and Ramírez J 2020 J. Rheol. 64 709

    Google Scholar Pub Med

    Sundaravadivelu Devarajan D, Wang J, Szała-Mendyk B, Rekhi S, Nikoubashman A, Kim Y C and Mittal J 2024 Nat. Commun. 15 1912

    Google Scholar Pub Med

    Kastelic M and Vlachy V 2018 J. Phys. Chem. B 122 5400

    Google Scholar Pub Med

    Sagawa T, Oda M, Morii H, Takizawa H, Kozono H and Azuma T 2005 Mol. Immunol. 42 9

    Google Scholar Pub Med

    Raut A S and Kalonia D S 2016 Mol. Pharm. 13 774

    Google Scholar Pub Med

    Sun G, Wang Y, Lomakin A, Benedek G B, Stanley H E, Xu L and Buldyrev S V 2016 J. Chem. Phys. 145 194901

    Google Scholar Pub Med

    Yang L, Biswas M E and Chen P 2003 Biophys. J. 84 509

    Google Scholar Pub Med

    Widom B 1965 J. Chem. Phys. 43 3892

    Google Scholar Pub Med

    Williamson A R 1976 Annu. Rev. Biochem. 45 467

    Google Scholar Pub Med

    Henderson R, Watts B E, Ergin H N, Anasti K, Parks R, Xia S M, Trama A, Liao H X, Saunders K O, Bonsignori M,Wiehe K, Haynes B F and Alam S M 2019 Nat. Commun. 10 654

    Google Scholar Pub Med

    Annunziata O, Asherie N, Lomakin A, Pande J, Ogun O and Benedek G B 2002 Proc. Natl. Acad. Sci. USA 99 14165

    Google Scholar Pub Med

    Wang Y and Annunziata O 2007 J. Phys. Chem. B 111 1222

    Google Scholar Pub Med

    Arakawa T and Timasheff S N 1985 Biochemistry 24 6756

    Google Scholar Pub Med

    Bhat R and Timasheff S N 1992 Protein Sci. 1 1133

    Google Scholar Pub Med

    Nobeyama T, Furuki T and Shiraki K 2023 Langmuir 39 17043

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(37) PDF downloads(0) Cited by(0)

Access History

Molecular simulation study on phase separation of immunoglobulin G

Fund Project: 

Abstract: Understanding the liquid-liquid phase separation (LLPS) of immunoglobulin G (IgG) is crucial, as it profoundly influences IgG's biological activity and stability. In this study, we employed coarse-grained molecular dynamics simulations to systematically investigate the phase separation behavior of IgG. We first constructed two types of IgG models: all-pair IgG model and partial-pair IgG model, and compared the coexistence curve from our simulations with experimental data. Our results showed that the partial-pair IgG model aligns better with the experimental critical temperature and critical density. Using this model, we then calculated the temperature-dependent variations of IgG's radius of gyration, surface tension, viscosity, etc. More importantly, we demonstrated that variations in the interaction strengths among IgG molecules significantly influence their phase separation behavior. Specifically, a higher standard deviation of interaction strength at different temperatures is found to lead to more stable phase-separated states. Furthermore, we observed that the introduction of repulsive polymers and strongly attractive polymers consistently enhances IgG phase separation, while weakly attractive polymers exhibit a dual regulatory effect on the phase separation. Overall, this study provides valuable insights into the mechanisms governing IgG phase behavior, with potential implications for optimizing biopharmaceutical products.

Reference (75)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return