2025 Volume 34 Issue 7
Article Contents

Qinghua Wang(汪情华), Hao Sun(孙昊), Chenhao Lu(鲁晨浩), Huiran Yang(杨慧苒), and Lu Li(李璐). 2025: TaS2-based saturable absorbers for Q-switched fiber laser applications, Chinese Physics B, 34(7): 074209. doi: 10.1088/1674-1056/addcd7
Citation: Qinghua Wang(汪情华), Hao Sun(孙昊), Chenhao Lu(鲁晨浩), Huiran Yang(杨慧苒), and Lu Li(李璐). 2025: TaS2-based saturable absorbers for Q-switched fiber laser applications, Chinese Physics B, 34(7): 074209. doi: 10.1088/1674-1056/addcd7

TaS2-based saturable absorbers for Q-switched fiber laser applications

  • Received Date: 21/04/2025
    Accepted Date: 07/05/2025
  • Fund Project:

    Project supported by the National Natural Science Foundation of China (Grant No. 12075190) and the Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY019).

  • PACS: 42.55.Wd; 42.70.Gi; 42.70.-a

  • Transition metal disulfides are widely applied as nonlinear optical materials for laser pulse generation. In this paper, TaS$_{2}$ is successfully used for the first time to achieve a high-energy passively $Q$-switched erbium-doped fiber (EDF) laser. TaS$_{2}$ nanosheets are prepared by the liquid phase exfoliation method, and then the TaS$_{2}$ solution is mixed with polyvinyl alcohol (PVA). TaS$_{2}$/PVA film is prepared, which is cut into $\rm 1 mm \times 1 mm$ flakes. TaS$_{2}$/PVA saturable absorber (SA) is obtained by sandwiching a small flake between two fiber optic patch cable connectors. With the TaS$_{2}$/PVA SA added to an EDF laser, a $Q$-switched fiber laser with a center wavelength of 1560 nm and a repetition rate ranging from 51.33 kHz to 83.04 kHz is realized. At the pump power of 231 mW, the maximum output power is 1094 μW, and the shortest pulse duration is 3.48 μs. The results confirm that the TaS$_{2}$ material has excellent potential for application in nonlinear optics.
  • 加载中
  • Lin H Y, Chuang Y J and Lin P J 2005 Sci. Rep. 11 9525

    Google Scholar Pub Med

    Vrijman C, Van Drooge A, Limpens J, Bos J, Van Der Veen J, Spuls P and Wolkerstorfer A J 2011 Br. J. Dermatol. 165 934

    Google Scholar Pub Med

    Tabata N, Yagi S and Hishii M J 1996 Mater. Process. Technol. 62 309

    Google Scholar Pub Med

    Chen X, Lotshaw W, Ortiz A, Staver P, Erikson C, McLaughlin M and Rockstroh T 1996 J. Laser Appl. 8 233

    Google Scholar Pub Med

    Jia X, Zhang Y, Chen Y, Wang H, Zhu G and Zhu X 2019 Int. J. Adv. Manuf. Technol. 104 1269

    Google Scholar Pub Med

    Puttnam B J, Rademacher G and Luís R S 2021 Optica 8 1186

    Google Scholar Pub Med

    Shen J P, Chen Y, Chen L, Xing F Y, Zhang F B, Xia R Z, Zuo H Y, Xiong F and Jiang R R 2025 Chin. Phys. Lett. 42 044202

    Google Scholar Pub Med

    Bruder F K, Hagen R, Rölle T, Weiser M S and Fäcke T 2011 Angew. Chem. Int. Ed. 50 4552

    Google Scholar Pub Med

    Partovi A, Peale D, Wuttig M, Murray C A, Zydzik G, Hopkins L, Baldwin K, Hobson W S, Wynn J and Lopata J 1999 Appl. Phys. Lett. 75 1515

    Google Scholar Pub Med

    Shen J, Xu S, Jiang R, Wang W, Zhang S, Xing F, Chen Y and Chen L 2024 Chin. Phys. Lett. 41 034201

    Google Scholar Pub Med

    Li H, Liu H, Yang Y, Lu R and Chen X 2022 Chin. Phys. Lett. 39 034201

    Google Scholar Pub Med

    Zhang M, Chi Z, Wang G, Fan Z, Wu H, Yang P, Yang J, Yan P and Sun Z 2022 Adv. Mater. 34 2205679

    Google Scholar Pub Med

    Drobczyński S and Dus-szachniewicz K 2016 J. Opt. Soc. Am. B 34 38

    Google Scholar Pub Med

    Chen X, Liu T, ZhangW, Guo D and Zhu H 2024 Microw. Opt. Technol. Lett. 66 e33880

    Google Scholar Pub Med

    Guo B, Xiao Q L, Wang S H and Zhang H 2019 Laser Photon. Rev. 13 1800327

    Google Scholar Pub Med

    Sakata H, Takahashi N and Ushiro Y 2018 Appl. Phys. B 124 1

    Google Scholar Pub Med

    Shang Z, Wang G, Li J, Huang Q, Sun J, Cheng R, Zhang M, Yang J, Zhang Z and Yin J 2023 Opt. Lett. 48 2768

    Google Scholar Pub Med

    Yang H, Qi M, Li X, Xue Z, Cheng J, Lu C, Han D, Li L, Zhang Y and Zhao F 2023 Opt. Express 31 38688

    Google Scholar Pub Med

    Pang L, Jiang L, Zhao M, Zhang J, Zhao Q, Li L, Wu R, Lv Y and Liu W J 2025 J. Mater. Sci. Technol. 223 208

    Google Scholar Pub Med

    Li L, Pang L H, Wang R, Zhang X, Hui Z, Han D, Zhao F and Liu W J 2022 Laser Photon. Rev. 16 2100255

    Google Scholar Pub Med

    Li L, Cheng JW, Zhao Q Y, Zhang J N, Yang H, Zhang Y, Hui Z, Zhao F and Liu W J 2023 Opt. Express 31 16872

    Google Scholar Pub Med

    Wang G, Sheng Q, Tang S, Li Q, Xiong S, Lu C, Bai C, Zhang W, Zhang H and Fu S 2023 Opt. Express 31 26145

    Google Scholar Pub Med

    Shang X, Xu N, Guo J, Sun S, Zhang H, Wageh S, Al-Ghamdi A A, Zhang H and Li D 2023 Sci. China Phys. Mech. Astron. 66 254211

    Google Scholar Pub Med

    Li L, Lv R, Liu S, Wang X, Wang Y, Chen Z and Wang J 2018 Laser Phys. 28 055106

    Google Scholar Pub Med

    Mao D,Wang H Q, Zhang H Z, Zeng C, Du Y Q, He ZW, Sun Z P and Zhao J L 2021 Nat. Commun. 12 6712

    Google Scholar Pub Med

    Yang H R, Qi M T, Li X P, Xue Z, Lu C H, Cheng J W, Han D D and Li L 2024 Chin. Phys. Lett. 41 014202

    Google Scholar Pub Med

    Si Z Z, Dai C Q and Liu W J 2024 Chin. Phys. Lett. 41 020502

    Google Scholar Pub Med

    Li L, Xue Z, Pang L H, Xiao X S, Yang H R, Zhang J N, Zhang Y M, Zhao Q Y and Liu W J 2024 Opt. Lett. 49 1293

    Google Scholar Pub Med

    Xiao Y J, Xing X W, Cui W W, Chen Y Q, Zhou Q and Liu W J 2023 Chin. Phys. Lett. 40 054201

    Google Scholar Pub Med

    Wang H Y, Xiao Y J, Liu Q, Xing X W, Yang H J and Liu W J 2023 Chin. Phys. Lett. 40 114204

    Google Scholar Pub Med

    Meng X C, Li L, Sun N Z, Xue Z, Liu Q, Ye H and LiuWJ 2023 Chin. Phys. Lett. 40 124202

    Google Scholar Pub Med

    Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538

    Google Scholar Pub Med

    Liu H, Luo A P, Wang F Z, Tang R, Liu M, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Lett. 39 4591

    Google Scholar Pub Med

    Chen X, Zhang Z, Ding Z, Liu J and Wang L 2016 Angew. Chem. 128 10532

    Google Scholar Pub Med

    Aguey-Zinsou F, Guo Z, Ng Y H and Wang D W 2018 Chempluschem 83 890

    Google Scholar Pub Med

    Wang H,WangW, Zhong Y, Li D, Li Z, Xu X, Song X, Chen Y, Huang P and Mei A 2022 Adv. Mater. 34 2206122

    Google Scholar Pub Med

    Pang L, Li L, Liu W, Wu R and Lv Y 2020 Opt. Mater. 102 109784

    Google Scholar Pub Med

    Bendenia C, Merad-Dib H, Bendenia S and Hadri B 2018 Optik 174 167

    Google Scholar Pub Med

    Yang H, Li X, Han D, Zhao Q, Li L, Gong Y and Zhao F 2022 Opt. Laser Technol. 149 107895

    Google Scholar Pub Med

    Ahmad H, Tiu Z C and Ooi S I 2018 Chin. Opt. Lett. 16 020009

    Google Scholar Pub Med

    Zhou D P, Wei L, Dong B and Liu W K 2009 IEEE Photon. Technol. Lett. 22 9

    Google Scholar Pub Med

    Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z, Lu S, Zhang H, Wen S and Tang D 2013 J. Lightwave Technol. 31 2857

    Google Scholar Pub Med

    Ahmad H, Azmy N F, Yusoff N, Reduan S A, Aidit S N, Bayang L and Samion M Z 2021 Optik 243 167157

    Google Scholar Pub Med

    Samsamnun F S, Zulkipli N F, Sarjidan M, Harun S W, Majid W, Khudus M I M A, Shuhaimi A, Rosol A H A, Rusdi M and Jafry A A A 2020 Opt. Fiber Technol. 54 102073

    Google Scholar Pub Med

    Luo Z, Zhou M, Weng J, Huang G, Xu H, Ye C and Cai Z 2010 Opt. Lett. 35 3709

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(28) PDF downloads(1) Cited by(0)

Access History

TaS2-based saturable absorbers for Q-switched fiber laser applications

Fund Project: 

Abstract: Transition metal disulfides are widely applied as nonlinear optical materials for laser pulse generation. In this paper, TaS$_{2}$ is successfully used for the first time to achieve a high-energy passively $Q$-switched erbium-doped fiber (EDF) laser. TaS$_{2}$ nanosheets are prepared by the liquid phase exfoliation method, and then the TaS$_{2}$ solution is mixed with polyvinyl alcohol (PVA). TaS$_{2}$/PVA film is prepared, which is cut into $\rm 1 mm \times 1 mm$ flakes. TaS$_{2}$/PVA saturable absorber (SA) is obtained by sandwiching a small flake between two fiber optic patch cable connectors. With the TaS$_{2}$/PVA SA added to an EDF laser, a $Q$-switched fiber laser with a center wavelength of 1560 nm and a repetition rate ranging from 51.33 kHz to 83.04 kHz is realized. At the pump power of 231 mW, the maximum output power is 1094 μW, and the shortest pulse duration is 3.48 μs. The results confirm that the TaS$_{2}$ material has excellent potential for application in nonlinear optics.

Reference (45)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return