2025 Volume 34 Issue 7
Article Contents

Jun Qi(齐军), Tian Lan(兰天), Jing-Hao Zhang(张敬昊), Ying Li(李颖), Yi-Wen Lou(楼亦文), Feng-Jiao Qin(覃凤姣), Yu-Ying Liu(刘豫颖), and Zhi-Yong Wang(王智勇). 2025: Self-organized phase-locking of a mixed-resonant cavity diode laser array enabled by on-chip Talbot effect, Chinese Physics B, 34(7): 074215. doi: 10.1088/1674-1056/ade387
Citation: Jun Qi(齐军), Tian Lan(兰天), Jing-Hao Zhang(张敬昊), Ying Li(李颖), Yi-Wen Lou(楼亦文), Feng-Jiao Qin(覃凤姣), Yu-Ying Liu(刘豫颖), and Zhi-Yong Wang(王智勇). 2025: Self-organized phase-locking of a mixed-resonant cavity diode laser array enabled by on-chip Talbot effect, Chinese Physics B, 34(7): 074215. doi: 10.1088/1674-1056/ade387

Self-organized phase-locking of a mixed-resonant cavity diode laser array enabled by on-chip Talbot effect

  • Received Date: 27/03/2025
    Accepted Date: 28/05/2025
  • Fund Project:

    This research was funded by the Science and Technology Commission Foundation of the Central Military Commission (Grant No. 2023-JCJQ-JJ-1008).

  • PACS: 42.55.Px; 42.55.Tv; 42.55.Ah; 85.30.-z

  • To address the challenge of achieving stable in-phase coherent optical field in high-power laser arrays, we propose a novel dual Talbot diffraction coupling method that combines the on-chip self-injection effect with a mixed-resonant cavity diode laser array (MDLA). The designed MDLA incorporates two types of resonant cavities and an integrated external fractional Talbot cavity to compensate for in-phase mode phase delays. Numerical simulations demonstrate that the near-field optical pattern can be self-imaged via self-organized phase-locking, while the far-field optical pattern of in-phase mode can be coherently enhanced and modulated to exhibit a single-lobe pattern successfully. Furthermore, this method could inherently provide strong optical coupling and overcome the limited scalability of the weakly-coupled laser arrays. Ultimately, by leveraging self-organized phase-locking and Talbot-induced mode discrimination, our approach offers a robust platform for realizing high-power coherent laser sources with scalable integration potential.
  • 加载中
  • Zhang Y S, Xu Y F, Zheng J L, Li L Y, Fang T and Chen X F 2023 Chin. Phys. B 32 094204

    Google Scholar Pub Med

    Gen P F, Chen M, An X Y, LiuWY, Zhu X Z, Li J L, Li B Y and Sheng Z M 2023 Chin. Phys. B 32 044101

    Google Scholar Pub Med

    Zhang G B, Liu S, Zou D B, Cui Y, Liu J P, Yang X H, Ma Y Y and Shao F Q 2023 Chin. Phys. B 32 095202

    Google Scholar Pub Med

    Etemadi A, Khajehmougahi K, Solimei L, Benedicenti S and Chiniforush N 2024 Appl. Sci. 14 847

    Google Scholar Pub Med

    Xu H, Li Z Q, Pang C, Li R, Li G L, Akhmadaliev S, Zhou S Q, Lu Q M, Jia Y C and Chen F 2022 Chin. Phys. B 31 094209

    Google Scholar Pub Med

    BaiWC, QinWZ, Tang D, Ji F M, Chen H S, Yang F, Qiao Z Q, Duan T, Lin D, He R, Zhu W K and Wang L 2021 Opt. Laser Technol. 139 106989

    Google Scholar Pub Med

    Zhang W Q, Liu W Z, Wang J W, Cao P, Chen J X, Ting F, Zhou X Y and Zheng W H 2022 Opt. Lett. 47 5012

    Google Scholar Pub Med

    Adams M, Holly C, Rauch S, Traub M, Hoffmann H and Haefner C 2024 Opt. Express 32 6446

    Google Scholar Pub Med

    Evered C, Li K and Fan Y L 2024 Opt. Lett. 49 3524

    Google Scholar Pub Med

    Yuan M Y, Wang W Q, Wang X Y, Wang Y, Yang Q H, Cheng D, Liu Y, Huang L, Zhang M R, Liang B, Zhao W and Zhang W F 2021 Opt. Lett. 46 4855

    Google Scholar Pub Med

    Chang G L, Zhu H, Yu C R, Zhu H Q, Xu G Y and He L 2020 Infrared Phys. Technol. 109 103427

    Google Scholar Pub Med

    Ackley D E 1983 Appl. Phys. Lett. 42 452

    Google Scholar Pub Med

    Botez D, Hayashida P, Mawst L J and Roth T J 1988 Appl. Phys. Lett. 53 1366

    Google Scholar Pub Med

    Naurois G M, Carras M, Simozrag B, Patard O, Alexandre F and Marcadet X 2011 AIP Adv. 1 032165

    Google Scholar Pub Med

    Liu Y H, Zhang J C, Yan F L, Liu F Q, Zhuo N, Wang L J, Liu J Q and Wang Z G 2015 Appl. Phys. Lett. 106 142104

    Google Scholar Pub Med

    Jiang W and Chakraborty S 2021 Opt. Lett. 46 1137

    Google Scholar Pub Med

    Wenzel H, Crump P, Fricke J, Ressel P and Erbert G 2013 IEEE J. Quantum Electron. 491102

    Google Scholar Pub Med

    Lyakh A, Maulini R, Tsekoun A, Go R and Patel C K N 2014 Opt. Express 22 1203

    Google Scholar Pub Med

    Kirch J D, Chang C C, Boyle C, Mawst L J, Lindberg D, Earles T and Botez D 2015 Appl. Phys. Lett. 106 061113

    Google Scholar Pub Med

    Kao T Y, Hu Q and Reno J L 2010 Appl. Phys. Lett. 96 101106

    Google Scholar Pub Med

    Zhou X Y, Qu H W, Qi A Y, Ma X L, Zhao S Y, Wang Y F and Zheng W H 2018 IEEE Photonics Technol. Lett. 30 1645

    Google Scholar Pub Med

    Jia Z W, Wang L, Zhang J C, Zhao Y, Liu C W, Zhai S Q, Zhuo N, Liu J Q, Wang L J, Liu S M, Liu F Q and Wang Z G 2017 Appl. Phys. Lett. 111 061108

    Google Scholar Pub Med

    Xu Y F, Sun Y Q, Li W J, Ma Y, Zhuo N, Liu J Q, Zhang J C, Zhai S Q, Liu S, Wang L J and Liu F Q 2022 Opt. Express 30 36783

    Google Scholar Pub Med

    Zhao Y, Zhang J C, Cheng F M, Wang D B, Liu C W, Zhuo N, Zhai S Q, Wang L J, Liu J Q, Liu S, Liu F Q and Wang Z G 2018 Nanoscale Res. Lett. 13 205

    Google Scholar Pub Med

    Qi J, Lan T, MaW, Zhang J, Li Y, Li D Z, Liu X S andWang Z Y 2024 Opt. Laser Technol. 177 111168

    Google Scholar Pub Med

    Leger J R 1989 Appl. Phys. Lett. 55 334

    Google Scholar Pub Med

    Zhou C and Liu L 1995 Opt. Commun. 1 115

    Google Scholar Pub Med

    Wen C Y, Li W, Dai J J, Ma S F and Wang Z Y 2023 Photonics 10 115

    Google Scholar Pub Med

    Lei W, Dai J J, Li S N, Jin D Y and Wang Z Y 2024 J. Lightwave Technol. 42 8263

    Google Scholar Pub Med

    Wang X F, Xu N, Gong Y H and Li J W 2025 Infrared Laser Eng. 54 20240448

    Google Scholar Pub Med

    Pan G Z, Xun M, Sun Y, Zhao Z Z, Xu C, Xie Y Y, Wu D X and Zhou J T 2022 Opt. Laser Technol. 149 107809

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(15) PDF downloads(1) Cited by(0)

Access History

Self-organized phase-locking of a mixed-resonant cavity diode laser array enabled by on-chip Talbot effect

Fund Project: 

Abstract: To address the challenge of achieving stable in-phase coherent optical field in high-power laser arrays, we propose a novel dual Talbot diffraction coupling method that combines the on-chip self-injection effect with a mixed-resonant cavity diode laser array (MDLA). The designed MDLA incorporates two types of resonant cavities and an integrated external fractional Talbot cavity to compensate for in-phase mode phase delays. Numerical simulations demonstrate that the near-field optical pattern can be self-imaged via self-organized phase-locking, while the far-field optical pattern of in-phase mode can be coherently enhanced and modulated to exhibit a single-lobe pattern successfully. Furthermore, this method could inherently provide strong optical coupling and overcome the limited scalability of the weakly-coupled laser arrays. Ultimately, by leveraging self-organized phase-locking and Talbot-induced mode discrimination, our approach offers a robust platform for realizing high-power coherent laser sources with scalable integration potential.

Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return