从软物质到拓扑力学超材料

上一篇

下一篇

李锋, 汤正, 马方垣, 周迪. 2024: 从软物质到拓扑力学超材料, 物理, 53(10): 673-682. doi: 10.7693/wl20241002
引用本文: 李锋, 汤正, 马方垣, 周迪. 2024: 从软物质到拓扑力学超材料, 物理, 53(10): 673-682. doi: 10.7693/wl20241002
LI Feng, TANG Zheng, MA Fang-Yuan, ZHOU Di. 2024: From soft matter to topological mechanical metamaterials, Physics, 53(10): 673-682. doi: 10.7693/wl20241002
Citation: LI Feng, TANG Zheng, MA Fang-Yuan, ZHOU Di. 2024: From soft matter to topological mechanical metamaterials, Physics, 53(10): 673-682. doi: 10.7693/wl20241002

从软物质到拓扑力学超材料

From soft matter to topological mechanical metamaterials

    Corresponding authors: LI Feng, email:phlifeng@bit.edu.cn ;  ZHOU Di, email:dizhou@bit.edu.cn
  • 摘要: 软物质是物理学、化学和生物学的重要研究对象。在软物质中,等静定系统恰好处在力学稳定和非稳定的边缘,展现出丰富的物理性质,普遍存在于自然界和工程领域,如颗粒物质、细胞骨架纤维和软体机器人等。等静定系统展现出独特的力学性能极化现象,一侧因力学软模而展现出柔软性,另一侧则在自应力作用下异常坚硬,这种奇特的表面性质具有拓扑稳定性,对材料内部缺陷及外部破坏不敏感,为力学材料的创新设计提供了新视角,催生了“软物质拓扑力学”这一前沿领域。文章基于软物质的基本概念,融合拓扑能带理论,聚焦于力学超材料,讨论了软物质拓扑力学的发展历程及最新研究进展。
  • 加载中
  • Guidolin C, Intyre J M, Rio E et al. Nat. Commun., 2023, 14:1
    Zheng Q, Yu A. Phys. Rev. Lett., 2014, 113:6
    Ma L L, Li C Y, Pan J T et al. Light Sci. Appl., 2022, 11:1
    Zhao Y, Hu H, Huang Y et al. Nat. Commun., 2024, 15:1
    Bi D, Yang X, Marchetti M C et al. Phys. Rev. X, 2016, 6:2
    Li F, Gao Y, Zhang C et al. Polymer, 2020, 208:3
    Barré C, Page G, Talbot J et al. Phys. Rev. E, 2019, 99:4
    Franz S, Hertz J. Phys. Rev. Lett., 1995, 74:11
    Ton A T, MacKeith A K, Shattuck M D et al. Phys. Rev. Res., 2024, 6:1
    Kaliman S, Hubert M, Wollnik C et al. Phys. Rev. X, 2021, 11:3
    Picu R. Soft Matter, 2011, 7:15
    Chen Y, Ai B, Wong Z J. Nano Converg., 2020, 7:1
    Micoulaut M. Rep. Prog. Phys., 2016, 79:6
    Babilas R, Młynarek K, Łoński W et al. J. Alloys Compd., 2021, 868:159241
    https://en.wikipedia.org/wiki/Chirality_(physics)
    Novoselov K S, Geim A K, Morozov S V et al. Science, 2004, 306:5696
    Lubensky T C, Kane C L, Mao X et al. Rep. Prog. Phys., 2015, 78:7
    Mitchell N P, Nash L M, Hexner D et al. Nat. Phys., 2018, 14:380
    Yan M, Lu J, Li F et al. Nat. Mat., 2018, 17(11):93
    Stenull O, Kane C L, Lubensky T C. Phys. Rev. Lett., 2016, 117:068001
    He C, Ni X, Ge H et al. Nat. Phys., 2016, 12:12
    Lu J, Qiu C, Ye L et al. Nat. Phys., 2017, 13:4
    He H, Qiu C, Ye L et al. Nature, 2018, 560:7716
    Rosa M I N, Pal R K, Arruda J R F et al. Phys. Rev. Lett., 2019, 123:3
    Süsstrunk R, Huber S D. Science, 2015, 349:6243
    Süsstrunk R, Huber S D. Proc. Natl. Acad. Sci., 2016, 113:33
    Jiang B, Bouhon A, Lin Z K et al. Nat. Phys., 2021, 17:11
    Fruchart M, Zhou Y, Vitelli V. Nature, 2020, 577:636
    Lei Q L, Zheng W, Tang F et al. Phys. Rev. Lett., 2021, 127:1
    Lei Q L, Tang F, Hu J D et al. Phys. Rev. Lett., 2022, 129:12
    Chen Y, Liu X, Hu G. J. Mech. Phys. Solids., 2019, 122:54
    Zhang Q, Chen Y, Zhang K et al. Extreme Mech. Lett., 2019, 28:76
    Kane C L, Lubensky T C. Nat. Phys., 2014, 10:39
    Rocklin D Z, Zhou S, Sun K et al. Nat. Commun., 2017, 8:1
    Paulose J, Chen B G, Vitelli V. Nat. Phys., 2015, 11:2
    Zunker W, Gonella S. Extreme Mech. Lett., 2021, 46:101344
    Bergne A, Baardink G, Loukaides E G et al. Extreme Mech. Lett., 2022, 57:101911
    Ma J, Zhou D, Sun K et al. Phys. Rev. Lett., 2018, 121:094301
    Chen B G, Upadhyaya N, Vitelli V. Proc. Natl. Acad. Sci., 2014, 111:36
    Bilal O R, Roman S, Chiara D et al. Adv. Mater., 2017, 29(26):1700540
    Baardink G, Anton S, Jayson P et al. Proc. Natl. Acad. Sci., 2018, 115(3):489
    Tang Z, Ma F, Li F et al. Phys. Rev. Lett., 2024, 133:106101
    Zhou D, Zhang L, Mao X. Phys. Rev. X, 2019, 9:2
    Zhou D, Zhang L, Mao X. Phys. Rev. Lett., 2018, 120:6
    Chaunsali R, Theocharis G. Phys. Rev. B, 2019, 100:1
    Zhou D, Ma J, Sun K et al. Phys. Rev. B, 2020, 101:104106
    Rosa M I N, Leamy M J, Ruzzene M. New J. Phys., 2023, 25:103053
    Manda B M, Chaunsali R, Theocharis G et al. Phys. Rev. B, 2022, 105:10
    Kevrekidis P G, Malomed B A, Gaididei Y B. Phys. Rev. E, 2002, 66:1
    Kevrekidis P G, Frantzeskakis D J. Reviews in Physics, 2016, 1:140
    Zhou D, Rocklin D Z, Leamy M et al. Nat. Commun., 2022, 13:3379
    Zhou D. New J. Phys., 2024, 26:073009
    Tempelman J R, Matlack K H, Vakakis A F. Phys. Rev. B, 2021, 104:17
    Ma F, Tang Z, Shi T et al. Phys. Rev. Lett., 2023, 131(4):046101
    Huang J, Zhang J, Xu D et al. Current Opin. Solid State Mater. Sci., 2023, 27:101053
    Chen Y F, Chen Z G, Ge H et al. Interdisciplinary Materials, 2023, 2:2
    Wang A, Meng Z, Chen C Q. Sci. Adv., 2023, 9:27
    Vakakis A F, Manevitch L I, Gendelman O et al. J. Sound Vib., 2003, 264:3
  • 加载中
计量
  • 文章访问数:  284
  • HTML全文浏览数:  284
  • PDF下载数:  37
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-09-06

从软物质到拓扑力学超材料

摘要: 软物质是物理学、化学和生物学的重要研究对象。在软物质中,等静定系统恰好处在力学稳定和非稳定的边缘,展现出丰富的物理性质,普遍存在于自然界和工程领域,如颗粒物质、细胞骨架纤维和软体机器人等。等静定系统展现出独特的力学性能极化现象,一侧因力学软模而展现出柔软性,另一侧则在自应力作用下异常坚硬,这种奇特的表面性质具有拓扑稳定性,对材料内部缺陷及外部破坏不敏感,为力学材料的创新设计提供了新视角,催生了“软物质拓扑力学”这一前沿领域。文章基于软物质的基本概念,融合拓扑能带理论,聚焦于力学超材料,讨论了软物质拓扑力学的发展历程及最新研究进展。

English Abstract

参考文献 (58)

目录

/

返回文章
返回