量子物理中的复现方法
Resurgent methods in quantum physics
-
摘要: 量子物理中,利用微扰展开计算物理量得到的通常是发散的渐近级数,这意味着这些物理量往往有不可忽略的非微扰贡献。博雷尔求和提供了将发散级数进行合理求和的方法,而在此基础上发展起来的复现理论是一种从微扰级数本身出发就可以提取出非微扰贡献的强大理论工具。文章将对复现理论及其在量子物理中的应用做简单的介绍。Abstract: Perturbative expansions of physical observables calculated in quantum physics are usually divergent asymptotic series, which indicates that these physical observables have important non-perturbative contributions. Borel resummation provides a suitable method to resum asymptotic series, and the resurgence theory, which is developed based on Borel resummation, is a powerful method that allows extraction of non-perturbative contributions from a perturbative series. We give an elementary introduction to the resurgence theory and its application in quantum physics.
-
Key words:
- divergent series /
- Borel resummation /
- instanton /
- renormalon /
- resurgence /
- non-perturbative .
-
-
Dyson F. Phys. Rev.,1952,85:631 Bender C,Wu T T. Phys. Rev.,1969,184(5):1231 Brézin E,Le Guillou J C,Zinn-Justin J. Phys. Rev. D,1977,15(6):1544 Mariño M. Instantons and Large N:An Introduction to Nonperturbative Methods. Cambridge University Press,2015 周稀楠. 物理,2025,54(6):388 Écalle J. Les Fonctions Resurgentes,vols. I, II, III,Université de Paris-Sud,Département de Mathématiques. Orsay,1981 Dunne G,Unsal M. JHEP,2012,11:170 Zinn-Justin J. Nucl. Phys. B,1983,218:333 Voros A. Annales de l’IHP. Physique théorique,1983,39(3):211 Delabaere E,Dillinger H,Pham F. J. Math. Phys.,1997,38(12): 6126 Del Monte F,Longhi P. 2024,arXiv:2406.00175 Hofstadter D. Phys. Rev. B,1976,14(6):2239 Gu J,Xu Z. JHEP,2025,02:099 Garoufalidis S,Gu J,Mariño M. Comm. Math. Phys.,2021,386(1):469 张欣宇. 物理,2025,54(6):396 江云峰. 物理,2025,54(6):380 Argyres P,Ünsal M. Phys. Rev. Lett.,2012,109:12 Mariño M,Miravitllas R,Reis T. JHEP,2022,08:279 Gu J,Jiang Y,Wang H. 2024,arXiv:2410.19633 Mariño M. JHEP,2008,2008:03 Gu J,Kashani-Poor A K,Klemm A et al. SciPost,2024,16:079 -
计量
- 文章访问数: 31
- HTML全文浏览数: 31
- PDF下载数: 7
- 施引文献: 0