[1] Zhou Z W,Tu T,Gong M,et al. Advances and prospects in research on quantum computation[J]. Progress in Physics,2009,29(2):127 (周正威,涂涛,龚明,等. 量子计算的进展和展望[J]. 物理学进展,2009,29(2):127(in chinese) doi: 10.3321/j.issn:1000-0542.2009.02.001 Zhou Z W, Tu T, Gong M, et al . Advances and prospects in research on quantum computation [J]. Progress in Physics, 2009, 29(2):127 doi: 10.3321/j.issn:1000-0542.2009.02.001
[2] Yang B,Sun H,Ott R,et al. Observation of gauge invariance in a 71-site bose-hubbard quantum simulator[J]. Nature,2020,587(7834):392−396 doi: 10.1038/s41586-020-2910-8
[3] Gong M,Wang S,Zha C,et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science,2021,372(6545):948−952 doi: 10.1126/science.abg7812
[4] Liu W Y,Zheng D N,Zhao S P. Superconducting quantum bits[J]. Chinese Phys. B,2018,27(2):027401 doi: 10.1088/1674-1056/27/2/027401
[5] Huang P,Kong X,Zhao N,et al. Observation of an anomalous decoherence effect in a quantum bath at room temperature[J]. Nat Commun,2011,2(1):570 doi: 10.1038/ncomms1579
[6] Wang K,Xu G,Gao F,et al. Ultrafast coherent control of a hole spin qubit in a germanium quantum Dot[J]. Nat Commun,2022,13(1):206 doi: 10.1038/s41467-021-27880-7
[7] Byrd M S,Lidar D A. Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing[J]. Phys Rev Lett,2002,89(4):047901 doi: 10.1103/PhysRevLett.89.047901
[8] Stern A,Lindner N H. Topological quantum computation-from basic concepts to first experiments[J]. Science,2013,339(6124):1179−1184 doi: 10.1126/science.1231473
[9] Wilczek F. Majorana Returns[J]. Nature Phys,2009,5(9):614−618 doi: 10.1038/nphys1380
[10] Beenakker C W J. Search for Majorana fermions in superconductors[J]. Annu. Rev. Condens. Matter Phys.,2013,4(1):113−136 doi: 10.1146/annurev-conmatphys-030212-184337
[11] Fu L,Kane C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator[J]. Phys Rev Lett,2008,100(9):096407 doi: 10.1103/PhysRevLett.100.096407
[12] Wang M X,Liu C,Xu J P,et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films[J]. Science,2012,336(6077):52−55 doi: 10.1126/science.1216466
[13] Sun H H,Zhang K W,Hu L H,et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor[J]. Phys Rev Lett,2016,116(25):257003 doi: 10.1103/PhysRevLett.116.257003
[14] Fu L,Berg E. Odd-Parity topological superconductors: theory and application to CuxBi2Se3[J]. Phys Rev Lett,2010,105(9):097001 doi: 10.1103/PhysRevLett.105.097001
[15] Sau J D,Lutchyn R M,Tewari S,et al. Generic new platform for topological quantum computation using semiconductor heterostructures[J]. Phys Rev Lett,2010,104(4):040502 doi: 10.1103/PhysRevLett.104.040502
[16] Lutchyn R M,Sau J D,Sarma S D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures[J]. Phys Rev Lett,2010,105(7):077001 doi: 10.1103/PhysRevLett.105.077001
[17] Nadj-Perge S,Drozdov I K,Bernevig B A,et al. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor[J]. Phys Rev B,2013,88(2):020407 doi: 10.1103/PhysRevB.88.020407
[18] Qi X L,Hughes T L,Zhang S C. Chiral topological superconductor from the quantum hall state[J]. Phys Rev B,2010,82(18):184516 doi: 10.1103/PhysRevB.82.184516
[19] Wang J,Zhou Q,Lian B,et al. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous hall plateau transition[J]. Phys Rev B,2015,92(6):064520 doi: 10.1103/PhysRevB.92.064520
[20] Wang D,Kong L,Fan P,et al. Evidence for Majorana bound states in an iron-based superconductor[J]. Science,2018,362(6412):333−335 doi: 10.1126/science.aao1797
[21] Li M,Li G,Cao L,et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs[J]. Nature,2022,606:890−895 doi: 10.1038/s41586-022-04744-8
[22] Oreg Y,Refael G,Von Oppen F. Helical liquids and Majorana bound states in quantum wires[J]. Phys Rev Lett,2010,105(17):177002 doi: 10.1103/PhysRevLett.105.177002
[23] Alicea J,Oreg Y,Refael G,et al. Non-abelian statistics and topological quantum information processing in 1D wire networks[J]. Nature Phys,2011,7(5):412−417 doi: 10.1038/nphys1915
[24] Aasen D,Hell M,Mishmash R V,et al. Milestones toward Majorana-based quantum computing[J]. Phys Rev X,2016,6(3):031016
[25] Bonderson P,Freedman M,Nayak C. Measurement-only topological quantum computation[J]. Phys Rev Lett,2008,101(1):010501 doi: 10.1103/PhysRevLett.101.010501
[26] Yang Z C,Iadecola T,Chamon C,et al. Hierarchical Majoranas in a programmable nanowire network[J]. Phys Rev B,2019,99(15):155138 doi: 10.1103/PhysRevB.99.155138
[27] Mourik V,Zuo K,Frolov S M,et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices[J]. Science,2012,336(6084):1003−1007 doi: 10.1126/science.1222360
[28] Deng M T,Yu C L,Huang G Y,et al. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device[J]. Nano Lett,2012,12(12):6414−6419 doi: 10.1021/nl303758w
[29] Das A,Ronen Y,Most Y,et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions[J]. Nature Phys,2012,8(12):887−895 doi: 10.1038/nphys2479
[30] Stanescu T D,Sarma S D. Superconducting proximity effect in semiconductor nanowires[J]. Phys Rev B,2013,87(18):180504 doi: 10.1103/PhysRevB.87.180504
[31] Takei S,Fregoso B M,Hui H Y,et al. Soft superconducting gap in semiconductor Majorana nanowires[J]. Phys Rev Lett,2013,110(18):186803 doi: 10.1103/PhysRevLett.110.186803
[32] Ihn S G,Song J I. InAs nanowires on Si substrates grown by solid source molecular beam epitaxy[J]. Nanotechnology,2007,18(35):355603 doi: 10.1088/0957-4484/18/35/355603
[33] Dimakis E,Lähnemann J,Jahn U,et al. Self-assisted nucleation and vapor-solid growth of InAs nanowires on bare Si (111)[J]. Cryst Growth Des,2011,11(9):4001−4008 doi: 10.1021/cg200568m
[34] Hertenberger S,Rudolph D,Bolte S,et al. Absence of vapor-liquid-solid growth during molecular beam epitaxy of self-induced InAs nanowires on Si[J]. Appl Phys Lett,2011,98(12):123114 doi: 10.1063/1.3567496
[35] Kang J H,Ronen Y,Cohen Y,et al. MBE growth of self-assisted InAs nanowires on graphene[J]. Semicond Sci Technol,2016,31(11):115005 doi: 10.1088/0268-1242/31/11/115005
[36] Madsen M H,Aagesen M,Krogstrup P,et al. Influence of the oxide layer for growth of self-assisted InAs nanowires on Si (111)[J]. Nanoscale Res Lett,2011,6(1):1−5
[37] Gupta N,Song Y,Holloway G W,et al. Temperature-dependent electron mobility in InAs nanowires[J]. Nanotechnology,2013,24(22):225202 doi: 10.1088/0957-4484/24/22/225202
[38] Zhang Z,Lu Z Y,Chen P P,et al. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy[J]. Appl Phys Lett,2013,103(7):073109 doi: 10.1063/1.4818682
[39] Pan D,Fu M,Yu X,et al. Controlled synthesis of phase-pure InAs nanowires on Si (111) by diminishing the diameter to 10 nm[J]. Nano Lett,2014,14(3):1214−1220 doi: 10.1021/nl4040847
[40] Li Q,Huang S,Pan D,et al. Suspended InAs nanowire gate-all-around field-effect transistors[J]. Appl Phys Lett,2014,105(11):113106 doi: 10.1063/1.4896105
[41] Li X,Wei X,Xu T,et al. Remarkable and crystal-structure-dependent piezoelectric and piezoresistive effects of InAs nanowires[J]. Adv Mater,2015,27(18):2852−2858 doi: 10.1002/adma.201500037
[42] Fu M,Pan D,Yang Y,et al. Electrical characteristics of field-effect transistors based on indium arsenide nanowire thinner than 10 nm[J]. Appl Phys Lett,2014,105(14):143101 doi: 10.1063/1.4897496
[43] Fu M,Tang Z,Li X,et al. Crystal phase- and orientation-dependent electrical transport properties of InAs nanowires[J]. Nano Lett,2016,16(4):2478−2484 doi: 10.1021/acs.nanolett.6b00045
[44] Wang L B,Guo J K,Kang N,et al. Phase-coherent transport and spin relaxation in InAs nanowires grown by molecule beam epitaxy[J]. Appl Phys Lett,2015,106(17):173105 doi: 10.1063/1.4919390
[45] Wang L B,Pan D,Huang G Y,et al. Crossover from coulomb blockade to ballistic transport in InAs nanowire devices[J]. Nanotechnology,2019,30(12):124001 doi: 10.1088/1361-6528/aaf9d4
[46] Feng B,Huang S,Wang J,et al. Schottky barrier heights at the interfaces between pure-phase InAs nanowires and metal contacts[J]. J Appl Phys,2016,119(5):054304 doi: 10.1063/1.4941391
[47] Wang J,Huang S,Lei Z,et al. Measurements of the spin-orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the pauli spin-blockade regime[J]. Appl Phys Lett,2016,109(5):053106 doi: 10.1063/1.4960464
[48] Mu J,Huang S,Liu Z H,et al. A highly tunable quadruple quantum dot in a narrow bandgap semiconductor InAs nanowire[J]. Nanoscale,2021,13(7):3983−3990 doi: 10.1039/D0NR08655J
[49] Wang J Y,Huang S,Huang G Y,et al. Coherent transport in a linear triple quantum dot made from a pure-phase InAs nanowire[J]. Nano Lett,2017,17(7):4158−4164 doi: 10.1021/acs.nanolett.7b00927
[50] Wang J Y,Huang G Y,Huang S,et al. Anisotropic pauli spin-blockade effect and spin-orbit interaction field in an InAs nanowire double quantum dot[J]. Nano Lett,2018,18(8):4741−4747 doi: 10.1021/acs.nanolett.8b01153
[51] Li W,Mu J,Huang S,et al. Detection of charge states of an InAs nanowire triple quantum dot with an integrated nanowire charge sensor[J]. Appl Phys Lett,2020,117(26):262102 doi: 10.1063/5.0032832
[52] Wang X,Huang S,Wang J Y,et al. A charge sensor integration to tunable double quantum dots on two neighboring InAs nanowires[J]. Nanoscale,2021,13(2):1048−1054 doi: 10.1039/D0NR07115C
[53] Caroff P,Wagner J B,Dick K A,et al. High-quality InAs/InSb nanowire heterostructures grown by metal-organic-vapor-phase epitaxy[J]. Small,2008,4(7):878−882 doi: 10.1002/smll.200700892
[54] Ercolani D,Rossi F,Li A,et al. InAs/InSb nanowire heterostructures grown by chemical beam epitaxy[J]. Nanotechnology,2009,20(50):505605 doi: 10.1088/0957-4484/20/50/505605
[55] Plissard S R,Slapak D R,Verheijen M A,et al. From InSb nanowires to nanocubes: looking for the sweet spot[J]. Nano Lett,2012,12(4):1794−1798 doi: 10.1021/nl203846g
[56] Pan D,Fan D X,Kang N,et al. Free-standing two-dimensional single-crystalline InSb nanosheets[J]. Nano Lett,2016,16(2):834−841 doi: 10.1021/acs.nanolett.5b04845
[57] So H,Pan D,Li L,et al. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy[J]. Nanotechnology,2017,28(13):135704 doi: 10.1088/1361-6528/aa6051
[58] Khan S A,Lampadaris C,Cui A,et al. Highly transparent gatable superconducting shadow junctions[J]. ACS Nano,2020,14(11):14605−14615 doi: 10.1021/acsnano.0c02979
[59] Aseev P,Fursina A,Boekhout F,et al. Selectivity map for molecular beam epitaxy of advanced III-V quantum nanowire networks[J]. Nano Lett,2018,19(1):218−227
[60] Desplanque L,Bucamp A,Troadec D,et al. In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate[J]. Nanotechnology,2018,29(30):305705 doi: 10.1088/1361-6528/aac321
[61] Aseev P,Wang G,Binci L,et al. Ballistic InSb nanowires and networks via metal-sown selective area growth[J]. Nano Lett,2019,19(12):9102−9111 doi: 10.1021/acs.nanolett.9b04265
[62] Krogstrup P,Ziino N L B,Chang W,et al. Epitaxy of semiconductor-superconductor nanowires[J]. Nature Mater,2015,14(4):400−406 doi: 10.1038/nmat4176
[63] Güsken N A,Rieger T,Zellekens P,et al. MBE growth of Al/InAs and Nb/InAs superconducting hybrid nanowire structures[J]. Nanoscale,2017,9(43):16735−16741 doi: 10.1039/C7NR03982D
[64] Kang J H,Grivnin A,Bor E,et al. Robust epitaxial Al coating of reclined InAs nanowires[J]. Nano Lett,2017,17(12):7520−7527 doi: 10.1021/acs.nanolett.7b03444
[65] Caroff P,Dick K A,Johansson J,et al. Controlled polytypic and twin-plane superlattices in III-V nanowires[J]. Nature Nanotech,2009,4(1):50−55 doi: 10.1038/nnano.2008.359
[66] Pan D,Song H,Zhang S,et al. In situ epitaxy of pure phase ultra-thin InAs-Al nanowires for quantum devices[J]. Chin Phys Lett,2022,39(5):058101 doi: 10.1088/0256-307X/39/5/058101
[67] Chang W,Albrecht S M,Jespersen T S,et al. Hard gap in epitaxial semiconductor-superconductor nanowires[J]. Nature Nanotech,2015,10(3):232−236 doi: 10.1038/nnano.2014.306
[68] Albrecht S M,Higginbotham A P,Madsen M,et al. Exponential protection of zero modes in Majorana islands[J]. Nature,2016,531(7593):206−209 doi: 10.1038/nature17162
[69] Deng M T,Vaitiekėnas S,Hansen E B,et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system[J]. Science,2016,354(6319):1557−1562 doi: 10.1126/science.aaf3961
[70] Deng M T,Vaitiekėnas S,Prada E,et al. Nonlocality of Majorana modes in hybrid nanowires[J]. Phys Rev B,2018,98(8):085125 doi: 10.1103/PhysRevB.98.085125
[71] Song H,Zhang Z,Pan D,et al. Large zero bias peaks and dips in a four-terminal thin InAs-Al nanowire device[J]. Phys Rev Research,2022,4(3):033235 doi: 10.1103/PhysRevResearch.4.033235
[72] Wang Z,Song H,Pan D,et al. Plateau regions for zero-bias peaks within 5% of the quantized conductance value 2e2/h[J]. Phys Rev Lett,2022,129(16):167702 doi: 10.1103/PhysRevLett.129.167702
[73] Zeng C,Sharma G,Tewari S,et al. Partially separated Majorana modes in a disordered medium[J]. Phys Rev B,2022,105(20):205122 doi: 10.1103/PhysRevB.105.205122
[74] Liu D E. Proposed method for tunneling spectroscopy with ohmic dissipation using resistive electrodes: a possible Majorana filter[J]. Phys Rev Lett,2013,111(20):207003 doi: 10.1103/PhysRevLett.111.207003
[75] Liu D,Zhang G,Cao Z,et al. Universal conductance scaling of Andreev reflections using a dissipative probe[J]. Phys Rev Lett,2022,128(7):076802 doi: 10.1103/PhysRevLett.128.076802
[76] Zhang S,Wang Z,Pan D,et al. Suppressing Andreev bound state zero bias peaks using a strongly dissipative lead[J]. Phys Rev Lett,2022,128(7):076803 doi: 10.1103/PhysRevLett.128.076803
[77] Wang Z,Zhang S,Pan D,et al. Large Andreev bound state zero bias peaks in a weakly dissipative environment[J]. Phys Rev B,2022,106(20):205421 doi: 10.1103/PhysRevB.106.205421
[78] Kang N,Fan D,Zhi J,et al. Two-dimensional quantum transport in free-standing InSb nanosheets[J]. Nano Lett,2018,19(1):561−569
[79] Zhi J,Kang N,Su F,et al. Coexistence of induced superconductivity and quantum hall states in InSb nanosheets[J]. Phys Rev B,2019,99(24):245302 doi: 10.1103/PhysRevB.99.245302
[80] Chen Y,Huang S,Pan D,et al. Strong and tunable spin-orbit interaction in a single crystalline InSb nanosheet[J]. npj 2D Mater Appl,2021,5(1):3 doi: 10.1038/s41699-020-00184-y
[81] Xue J,Chen Y,Pan D,et al. Gate defined quantum dot realized in a single crystalline Insb nanosheet[J]. Appl Phys Lett,2019,114(2):023108 doi: 10.1063/1.5064368
[82] Chen Y,Huang S,Mu J,et al. A double quantum dot defined by top gates in a single crystalline InSb nanosheet[J]. Chinese Phys B,2021,30(12):128501 doi: 10.1088/1674-1056/abff2e
[83] Zhi J,Kang N,Li S,et al. Supercurrent and multiple Andreev reflections in InSb nanosheet SNS junctions[J]. Phys. Status Solidi B,2019,256(6):1800538 doi: 10.1002/pssb.201800538
[84] Zhang H,de Moor M W A,Bommer J D S,et al. Large zero-bias peaks in InSb-Al hybrid semiconductor-superconductor nanowire devices[J]. arXiv:2101,1145:6
[85] Prada E,San-Jose P,de Moor M W A,et al. From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires[J]. Nat Rev Phys,2020,2(10):575−594 doi: 10.1038/s42254-020-0228-y
[86] Winkler G W,Wu Q S,Troyer M,et al. Topological phases in InAs1−xSbx: from novel topological semimetal to Majorana wire[J]. Phys Rev Lett,2016,117(7):076403 doi: 10.1103/PhysRevLett.117.076403
[87] Sestoft J E,Kanne T,Gejl A N,et al. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection[J]. Phys Rev Materials,2018,2(4):044202 doi: 10.1103/PhysRevMaterials.2.044202
[88] Mayer W,Schiela W F,Yuan J,et al. Superconducting proximity effect in InAsSb surface quantum wells with in situ Al contacts[J]. ACS Appl Electron Mater,2020,2(8):2351−2356 doi: 10.1021/acsaelm.0c00269
[89] Wen L,Pan D,Liu L,et al. Large-composition-range pure-phase homogeneous InAs1-xSbx nanowires[J]. J. Phys. Chem. Lett.,2022,13(2):598−605 doi: 10.1021/acs.jpclett.1c04001
[90] He J,Pan D,Yang G,et al. Nonequilibrium interplay between Andreev bound states and Kondo effect[J]. Phys Rev B,2020,102(7):075121 doi: 10.1103/PhysRevB.102.075121
[91] Cao Z,Liu D E,He W X,et al. Numerical study of PbTe-Pb hybrid nanowires for engineering Majorana zero modes[J]. Phys Rev B,2022,105(8):085424 doi: 10.1103/PhysRevB.105.085424
[92] Jiang Y,Yang S,Li L,et al. Selective area epitaxy of PbTe-Pb hybrid nanowires on a lattice-matched substrate[J]. Phys Rev Materials,2022,6(3):034205 doi: 10.1103/PhysRevMaterials.6.034205
[93] Jung J,Op het Veld R L M,Benoist R,et al. Universal platform for scalable semiconductor‐superconductor nanowire networks[J]. Adv Funct Mater,2021,31(38):2103062 doi: 10.1002/adfm.202103062
[94] Kanne T,Marnauza M,Olsteins D,et al. Epitaxial Pb on InAs nanowires for quantum devices[J]. Nature Nanotech,2021,16(7):776−781 doi: 10.1038/s41565-021-00900-9
[95] Bjergfelt M S,Carrad D J,Kanne T,et al. Superconductivity and parity preservation in as-grown In islands on InAs nanowires[J]. Nano Lett,2021,21(23):9875−9881 doi: 10.1021/acs.nanolett.1c02487
[96] Kousar B,Carrad D J,Stampfer L,et al. InAs/MoRe hybrid semiconductor/superconductor nanowire devices[J]. Nano Lett,2022,22(22):8845−8851 doi: 10.1021/acs.nanolett.2c02532
[97] Hyart T,Van Heck B,Fulga I C,et al. Flux-controlled quantum computation with Majorana fermions[J]. Phys Rev B,2013,88(3):035121 doi: 10.1103/PhysRevB.88.035121
[98] Vaitiekėnas S,Whiticar A M,Deng M T,et al. Selective-area-grown semiconductor-superconductor hybrids: a basis for topological networks[J]. Phys Rev Lett,2018,121(14):147701 doi: 10.1103/PhysRevLett.121.147701
[99] Krizek F,Sestoft J E,Aseev P,et al. Field effect enhancement in buffered quantum nanowire networks[J]. Phys Rev Materials,2018,2(9):093401 doi: 10.1103/PhysRevMaterials.2.093401
[100] Op het Veld R L M,Xu D,Schaller V,et al. In-plane selective area InSb-Al nanowire quantum networks[J]. Commun Phys,2020,3(1):59 doi: 10.1038/s42005-020-0324-4
[101] Pan D,Wang J Y,Zhang W,et al. Dimension engineering of high-quality InAs nanostructures on a wafer scale[J]. Nano Lett,2019,19(3):1632−1642 doi: 10.1021/acs.nanolett.8b04561
[102] Zhang H,Liu D E,Wimmer M,et al. Next steps of quantum transport in Majorana nanowire devices[J]. Nat Commun,2019,10(1):5128 doi: 10.1038/s41467-019-13133-1
[103] Cao Z, Chen S, Zhang G, et al. Recent progress on Majorana in semiconductor-superconductor heterostructures engineering and detection[J]. arXiv: 2206.06916 (2022)