高质量半导体-超导体纳米线原位分子束外延和低温量子输运研究进展

上一篇

下一篇

潘东, 赵建华. 高质量半导体-超导体纳米线原位分子束外延和低温量子输运研究进展[J]. 真空科学与技术学报, 2023, 43(3): 177-190. doi: 10.13922/j.cnki.cjvst.202301003
引用本文: 潘东, 赵建华. 高质量半导体-超导体纳米线原位分子束外延和低温量子输运研究进展[J]. 真空科学与技术学报, 2023, 43(3): 177-190. doi: 10.13922/j.cnki.cjvst.202301003
Dong PAN, Jianhua ZHAO. Research Progress on in-Situ Molecular-Beam Epitaxial Growth and Low-Temperature Quantum Transport Properties of High-Quality Semiconductor-Superconductor Nanowires[J]. zkkxyjsxb, 2023, 43(3): 177-190. doi: 10.13922/j.cnki.cjvst.202301003
Citation: Dong PAN, Jianhua ZHAO. Research Progress on in-Situ Molecular-Beam Epitaxial Growth and Low-Temperature Quantum Transport Properties of High-Quality Semiconductor-Superconductor Nanowires[J]. zkkxyjsxb, 2023, 43(3): 177-190. doi: 10.13922/j.cnki.cjvst.202301003

高质量半导体-超导体纳米线原位分子束外延和低温量子输运研究进展

    通讯作者: Tel: (010)82304998; E-mail: jhzhao@semi.ac.cn
  • 中图分类号: O469

Research Progress on in-Situ Molecular-Beam Epitaxial Growth and Low-Temperature Quantum Transport Properties of High-Quality Semiconductor-Superconductor Nanowires

    Corresponding author: Jianhua ZHAO, jhzhao@semi.ac.cn
  • MSC: O469

  • 摘要: 局域环境和量子比特之间的相互作用引起的量子退相干是目前限制量子计算发展的主要技术瓶颈。基于马约拉纳零能模的拓扑量子计算通过将量子信息非局域地存储于两个空间分离的马约拉纳零能模及其拓扑结构中,实现对局域噪音的免疫,有望从物理层面解决量子退相干问题。强自旋轨道耦合窄禁带半导体与超导体构成的异质结纳米线是研究马约拉纳零能模和拓扑量子计算的理想实验平台。本文综述了近年来高质量半导体-超导体纳米线的原位分子束外延制备和低温量子输运研究进展,并对半导体-超导体纳米线拓扑量子计算研究进行了展望。
  • 加载中
  • 图 1  利用MBE技术,采用自组织生长及金属催化生长制备的InAs纳米线的扫描电镜(SEM)和透射电镜(TEM)图像。(a)自组织生长的InAs纳米线的SEM图像[33]。(b)Au催化生长的InAs纳米线的SEM图像[38],插图为样品的局部放大图。(c)和(d)分别为自组织生长及Au催化生长的InAs纳米线的TEM图像[36,38]。(e)-(h)采用Ag作催化剂,晶向分别为<11-20>、<011>、<103>及<-2-11>的InAs纳米线的高分辨TEM图像[41]。(i)采用Ag作催化剂,Si衬底上生长的超细InAs纳米线的SEM图像[39];(j)超细InAs纳米线的高分辨TEM图像[39]

    Figure 1.  Transmission electron microscopy (TEM) and scanning electron microscope (SEM) images of the InAs nanowires grown by molecular-beam epitaxy with a self-assisted growth manner and using metal as catalysts. (a) SEM image of the InAs nanowires grown with a self-assisted growth manner [33]. (b) SEM image of the InAs nanowires grown using Au as catalysts [38]. The inset is an enlarge view of the sample. (c) and (d) High-resolution TEM images of the InAs nanowires grown with a self-assisted growth manner [36] and using Au as catalysts [38], respectively. (e)-(h) High resolution TEM images of the InAs nanowires grown using Ag as catalysts along the <11-20>, <011>, <103>, and <-2-11> directions, respectively [41]. (i) and (j) SEM and high-resolution TEM images of the ultrathin InAs nanowires grown on Si substrates using Ag as catalysts, respectively [39]

    图 2  高质量纯相InAs纳米线量子器件及输运性质。(a)不同栅压下,InAs纳米线磁电导曲线[44]。(b)不同栅压下,InAs纳米线的LφLSO[44]。(c)InAs纳米线的Fabry-Perot相干测量数据[45]。(d)和(e)利用InAs纳米线构造的耦合多量子点[47-49]。(f)InAs纳米线量子点中的自旋弛豫[50]。(g)集成了电荷探测器的InAs纳米线双量子点器件SEM图像[52]。(h)InAs纳米线量子点电荷探测器结构示意图、量子点的库伦震荡以及通过电荷探测器-量子点的传输电流[52]

    Figure 2.  Quantum devices and transport properties of the high-quality pure phase InAs nanowires. (a) Magnetoconductance measured at a temperature of 100 mK and at different applied back gate voltages [44]. (b) Gate voltage dependencies of Lφ and LSO at 100 mK [44]. (c) Differential conductance measured against Vg and Vbias clearly show the chessboard pattern of Fabry-Pérot oscillations [45]. (d) and (e) Highly tunable multiple quantum dots in InAs nanowires [47-49]. (f) Spin relaxation in the InAs nanowire quantum dots [50]. (g) False-color SEM image of the InAs nanowire double quantum dot integrated with a charge sensor [52]. (h) A schematic for the InAs nanowire double quantum dot integrated with a charge sensor and Coulomb oscillations (in blue color) of quantum dot along with transport current (in red color) through charge sensor-quantum dot [52]

    图 3  纯相超细InAs-Al纳米线的形貌、微结构及输运性质[66]。(a)-(g)单根超细InAs-Al纳米线的SEM局部放大图像。(h)-(k)分别为InAs-Al纳米线结构示意图、高阶环形暗场TEM图像、EDS成分面扫图及高分辨TEM图像。(l)-(m)在InAs-Al纳米线隧穿量子器件中分别观察到硬超导能隙和由安德列夫束缚态诱导的零偏压电导峰。(n)在InAs-Al纳米线库仑岛器件中实现了双电子周期的库仑阻塞,以及库仑阻塞峰随磁场从双电子到单电子的演变

    Figure 3.  Morphology, microstructure and transport properties of the pure phase ultrathin InAs-Al nanowires [66]. (a)-(g) Magnified SEM images of the ultrathin InAs-Al nanowires. (h) Schematic illustration of in situ epitaxy of Al half shell on an ultra-thin InAs nanowire. (i)-(k) High-angle annular dark-feld scanning TEM image, false-color overlay EDS elemental maps of In (yellow), As (green) and Al (red), and high-resolution TEM images of the ultrathin InAs-Al nanowires. (l)-(m) The hard superconducting gap and the zero bias conductance peak induced by the Andreev bound state were observed in the InAs-Al nanowire tunneling quantum device, respectively. (n) The 2e-periodic Coulomb blockade and 2e-1e transition of an InAs-Al nanowire island device

    图 4  在纯相超细InAs-Al纳米线中观测到接近量子化的零偏压电导谷到零偏压电导峰的转变。(a)InAs-Al器件SEM图像。(b)InAs-Al器件随磁场变化的电导谱[71]

    Figure 4.  Large zero bias peaks on the order of 2e2/h and a magnetic-field-driven transition between a zero bias peak and a zero bias dip while the zero-bias conductance sticks close to 2e2/h were observed in a pure phase thin InAs-Al hybrid nanowire device, using a four-terminal device design. (a) False-color SEM image of the InAs-Al device; (b) The dI/dV line-cuts from 0.48 T to 1.06 T, resolving a transition from zero bias dip (blue) to zero bias peak near 2e2/h [71]

    图 5  在纯相超细InAs-Al纳米线中观测到量子化零偏压电导峰[72]。(a)纯相超细InAs-Al纳米线器件SEM图像。(b)零偏压电导峰随磁场的变化。(c)零偏压电导峰随门电压的变化。(d)零偏压电导峰随偏压和磁场的变化。(e)零偏压电导峰随外加磁场角度的变化

    Figure 5.  Quantized zero bias conductance peak was observed in pure phase ultrathin InAs-Al nanowires [72]. (a) False-color SEM image of the pure phase ultrathin InAs-Al nanowire device. (b) and (c) The zero bias conductance peaks vary with the magnetic field and the gate voltage, respectively. (d) The zero bias conductance peak varies with bias voltage and magnetic field. (e) Angle dependence of the zero bias conductance peak by fixing the B amplitude at 1.2 T

    图 6  用于区分马约拉纳零能模和安德列夫束缚态的马约拉纳量子耗散器件及电导随温度变化的标度关系[74-77]。(a)包含耗散电阻的器件示意图。(b)四种情况下器件电导随温度变化的普适标度关系。(c)包含耗散(上)和不含耗散(下)的器件SEM图像。(d)零能安德列夫束缚态在无耗散时输运上体现为零偏压电导峰,有强耗散情况下零偏压电导被抑制而劈裂。(e)弱耗散情况下器件的隧道谱。(f) 弱耗散情况下零偏压电导G与温度T的关系。在100-300 mK区间零偏压电导随温度升高而增加

    Figure 6.  Majorana quantum dissipative devices and scaling law of conductance with temperature, which were used to distinguish between Majorana zero mode and Andreev bound state [74-77]. (a) Schematic diagram of the device containing the dissipation resistance. (b) Universal scaling law of device conductance versus temperature in four cases. (c) False-color SEM images of the InAs-Al nanowire devices with dissipation (upper) and without dissipation (lower). (d) The zero bias conductance peak was observed in the InAs-Al nanowire device without dissipation, while the zero bias conductance is suppressed and split with a strong dissipation resistance. (e) G vs V and B at T = 24 mK (upper) and 239 mK (lower) for the InAs-Al nanowire device in a weakly dissipative environment. (f) T dependence of zero-bias G. The zero bias conductance increases with temperature in the range of 100-300 mK

  • [1] Zhou Z W,Tu T,Gong M,et al. Advances and prospects in research on quantum computation[J]. Progress in Physics,2009,29(2):127 (周正威,涂涛,龚明,等. 量子计算的进展和展望[J]. 物理学进展,2009,29(2):127(in chinese) doi: 10.3321/j.issn:1000-0542.2009.02.001 Zhou Z W, Tu T, Gong M, et al . Advances and prospects in research on quantum computation [J]. Progress in Physics, 2009, 29(2):127 doi: 10.3321/j.issn:1000-0542.2009.02.001
    [2] Yang B,Sun H,Ott R,et al. Observation of gauge invariance in a 71-site bose-hubbard quantum simulator[J]. Nature,2020,587(7834):392−396 doi: 10.1038/s41586-020-2910-8
    [3] Gong M,Wang S,Zha C,et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science,2021,372(6545):948−952 doi: 10.1126/science.abg7812
    [4] Liu W Y,Zheng D N,Zhao S P. Superconducting quantum bits[J]. Chinese Phys. B,2018,27(2):027401 doi: 10.1088/1674-1056/27/2/027401
    [5] Huang P,Kong X,Zhao N,et al. Observation of an anomalous decoherence effect in a quantum bath at room temperature[J]. Nat Commun,2011,2(1):570 doi: 10.1038/ncomms1579
    [6] Wang K,Xu G,Gao F,et al. Ultrafast coherent control of a hole spin qubit in a germanium quantum Dot[J]. Nat Commun,2022,13(1):206 doi: 10.1038/s41467-021-27880-7
    [7] Byrd M S,Lidar D A. Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing[J]. Phys Rev Lett,2002,89(4):047901 doi: 10.1103/PhysRevLett.89.047901
    [8] Stern A,Lindner N H. Topological quantum computation-from basic concepts to first experiments[J]. Science,2013,339(6124):1179−1184 doi: 10.1126/science.1231473
    [9] Wilczek F. Majorana Returns[J]. Nature Phys,2009,5(9):614−618 doi: 10.1038/nphys1380
    [10] Beenakker C W J. Search for Majorana fermions in superconductors[J]. Annu. Rev. Condens. Matter Phys.,2013,4(1):113−136 doi: 10.1146/annurev-conmatphys-030212-184337
    [11] Fu L,Kane C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator[J]. Phys Rev Lett,2008,100(9):096407 doi: 10.1103/PhysRevLett.100.096407
    [12] Wang M X,Liu C,Xu J P,et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films[J]. Science,2012,336(6077):52−55 doi: 10.1126/science.1216466
    [13] Sun H H,Zhang K W,Hu L H,et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor[J]. Phys Rev Lett,2016,116(25):257003 doi: 10.1103/PhysRevLett.116.257003
    [14] Fu L,Berg E. Odd-Parity topological superconductors: theory and application to CuxBi2Se3[J]. Phys Rev Lett,2010,105(9):097001 doi: 10.1103/PhysRevLett.105.097001
    [15] Sau J D,Lutchyn R M,Tewari S,et al. Generic new platform for topological quantum computation using semiconductor heterostructures[J]. Phys Rev Lett,2010,104(4):040502 doi: 10.1103/PhysRevLett.104.040502
    [16] Lutchyn R M,Sau J D,Sarma S D. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures[J]. Phys Rev Lett,2010,105(7):077001 doi: 10.1103/PhysRevLett.105.077001
    [17] Nadj-Perge S,Drozdov I K,Bernevig B A,et al. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor[J]. Phys Rev B,2013,88(2):020407 doi: 10.1103/PhysRevB.88.020407
    [18] Qi X L,Hughes T L,Zhang S C. Chiral topological superconductor from the quantum hall state[J]. Phys Rev B,2010,82(18):184516 doi: 10.1103/PhysRevB.82.184516
    [19] Wang J,Zhou Q,Lian B,et al. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous hall plateau transition[J]. Phys Rev B,2015,92(6):064520 doi: 10.1103/PhysRevB.92.064520
    [20] Wang D,Kong L,Fan P,et al. Evidence for Majorana bound states in an iron-based superconductor[J]. Science,2018,362(6412):333−335 doi: 10.1126/science.aao1797
    [21] Li M,Li G,Cao L,et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs[J]. Nature,2022,606:890−895 doi: 10.1038/s41586-022-04744-8
    [22] Oreg Y,Refael G,Von Oppen F. Helical liquids and Majorana bound states in quantum wires[J]. Phys Rev Lett,2010,105(17):177002 doi: 10.1103/PhysRevLett.105.177002
    [23] Alicea J,Oreg Y,Refael G,et al. Non-abelian statistics and topological quantum information processing in 1D wire networks[J]. Nature Phys,2011,7(5):412−417 doi: 10.1038/nphys1915
    [24] Aasen D,Hell M,Mishmash R V,et al. Milestones toward Majorana-based quantum computing[J]. Phys Rev X,2016,6(3):031016
    [25] Bonderson P,Freedman M,Nayak C. Measurement-only topological quantum computation[J]. Phys Rev Lett,2008,101(1):010501 doi: 10.1103/PhysRevLett.101.010501
    [26] Yang Z C,Iadecola T,Chamon C,et al. Hierarchical Majoranas in a programmable nanowire network[J]. Phys Rev B,2019,99(15):155138 doi: 10.1103/PhysRevB.99.155138
    [27] Mourik V,Zuo K,Frolov S M,et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices[J]. Science,2012,336(6084):1003−1007 doi: 10.1126/science.1222360
    [28] Deng M T,Yu C L,Huang G Y,et al. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device[J]. Nano Lett,2012,12(12):6414−6419 doi: 10.1021/nl303758w
    [29] Das A,Ronen Y,Most Y,et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions[J]. Nature Phys,2012,8(12):887−895 doi: 10.1038/nphys2479
    [30] Stanescu T D,Sarma S D. Superconducting proximity effect in semiconductor nanowires[J]. Phys Rev B,2013,87(18):180504 doi: 10.1103/PhysRevB.87.180504
    [31] Takei S,Fregoso B M,Hui H Y,et al. Soft superconducting gap in semiconductor Majorana nanowires[J]. Phys Rev Lett,2013,110(18):186803 doi: 10.1103/PhysRevLett.110.186803
    [32] Ihn S G,Song J I. InAs nanowires on Si substrates grown by solid source molecular beam epitaxy[J]. Nanotechnology,2007,18(35):355603 doi: 10.1088/0957-4484/18/35/355603
    [33] Dimakis E,Lähnemann J,Jahn U,et al. Self-assisted nucleation and vapor-solid growth of InAs nanowires on bare Si (111)[J]. Cryst Growth Des,2011,11(9):4001−4008 doi: 10.1021/cg200568m
    [34] Hertenberger S,Rudolph D,Bolte S,et al. Absence of vapor-liquid-solid growth during molecular beam epitaxy of self-induced InAs nanowires on Si[J]. Appl Phys Lett,2011,98(12):123114 doi: 10.1063/1.3567496
    [35] Kang J H,Ronen Y,Cohen Y,et al. MBE growth of self-assisted InAs nanowires on graphene[J]. Semicond Sci Technol,2016,31(11):115005 doi: 10.1088/0268-1242/31/11/115005
    [36] Madsen M H,Aagesen M,Krogstrup P,et al. Influence of the oxide layer for growth of self-assisted InAs nanowires on Si (111)[J]. Nanoscale Res Lett,2011,6(1):1−5
    [37] Gupta N,Song Y,Holloway G W,et al. Temperature-dependent electron mobility in InAs nanowires[J]. Nanotechnology,2013,24(22):225202 doi: 10.1088/0957-4484/24/22/225202
    [38] Zhang Z,Lu Z Y,Chen P P,et al. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy[J]. Appl Phys Lett,2013,103(7):073109 doi: 10.1063/1.4818682
    [39] Pan D,Fu M,Yu X,et al. Controlled synthesis of phase-pure InAs nanowires on Si (111) by diminishing the diameter to 10 nm[J]. Nano Lett,2014,14(3):1214−1220 doi: 10.1021/nl4040847
    [40] Li Q,Huang S,Pan D,et al. Suspended InAs nanowire gate-all-around field-effect transistors[J]. Appl Phys Lett,2014,105(11):113106 doi: 10.1063/1.4896105
    [41] Li X,Wei X,Xu T,et al. Remarkable and crystal-structure-dependent piezoelectric and piezoresistive effects of InAs nanowires[J]. Adv Mater,2015,27(18):2852−2858 doi: 10.1002/adma.201500037
    [42] Fu M,Pan D,Yang Y,et al. Electrical characteristics of field-effect transistors based on indium arsenide nanowire thinner than 10 nm[J]. Appl Phys Lett,2014,105(14):143101 doi: 10.1063/1.4897496
    [43] Fu M,Tang Z,Li X,et al. Crystal phase- and orientation-dependent electrical transport properties of InAs nanowires[J]. Nano Lett,2016,16(4):2478−2484 doi: 10.1021/acs.nanolett.6b00045
    [44] Wang L B,Guo J K,Kang N,et al. Phase-coherent transport and spin relaxation in InAs nanowires grown by molecule beam epitaxy[J]. Appl Phys Lett,2015,106(17):173105 doi: 10.1063/1.4919390
    [45] Wang L B,Pan D,Huang G Y,et al. Crossover from coulomb blockade to ballistic transport in InAs nanowire devices[J]. Nanotechnology,2019,30(12):124001 doi: 10.1088/1361-6528/aaf9d4
    [46] Feng B,Huang S,Wang J,et al. Schottky barrier heights at the interfaces between pure-phase InAs nanowires and metal contacts[J]. J Appl Phys,2016,119(5):054304 doi: 10.1063/1.4941391
    [47] Wang J,Huang S,Lei Z,et al. Measurements of the spin-orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the pauli spin-blockade regime[J]. Appl Phys Lett,2016,109(5):053106 doi: 10.1063/1.4960464
    [48] Mu J,Huang S,Liu Z H,et al. A highly tunable quadruple quantum dot in a narrow bandgap semiconductor InAs nanowire[J]. Nanoscale,2021,13(7):3983−3990 doi: 10.1039/D0NR08655J
    [49] Wang J Y,Huang S,Huang G Y,et al. Coherent transport in a linear triple quantum dot made from a pure-phase InAs nanowire[J]. Nano Lett,2017,17(7):4158−4164 doi: 10.1021/acs.nanolett.7b00927
    [50] Wang J Y,Huang G Y,Huang S,et al. Anisotropic pauli spin-blockade effect and spin-orbit interaction field in an InAs nanowire double quantum dot[J]. Nano Lett,2018,18(8):4741−4747 doi: 10.1021/acs.nanolett.8b01153
    [51] Li W,Mu J,Huang S,et al. Detection of charge states of an InAs nanowire triple quantum dot with an integrated nanowire charge sensor[J]. Appl Phys Lett,2020,117(26):262102 doi: 10.1063/5.0032832
    [52] Wang X,Huang S,Wang J Y,et al. A charge sensor integration to tunable double quantum dots on two neighboring InAs nanowires[J]. Nanoscale,2021,13(2):1048−1054 doi: 10.1039/D0NR07115C
    [53] Caroff P,Wagner J B,Dick K A,et al. High-quality InAs/InSb nanowire heterostructures grown by metal-organic-vapor-phase epitaxy[J]. Small,2008,4(7):878−882 doi: 10.1002/smll.200700892
    [54] Ercolani D,Rossi F,Li A,et al. InAs/InSb nanowire heterostructures grown by chemical beam epitaxy[J]. Nanotechnology,2009,20(50):505605 doi: 10.1088/0957-4484/20/50/505605
    [55] Plissard S R,Slapak D R,Verheijen M A,et al. From InSb nanowires to nanocubes: looking for the sweet spot[J]. Nano Lett,2012,12(4):1794−1798 doi: 10.1021/nl203846g
    [56] Pan D,Fan D X,Kang N,et al. Free-standing two-dimensional single-crystalline InSb nanosheets[J]. Nano Lett,2016,16(2):834−841 doi: 10.1021/acs.nanolett.5b04845
    [57] So H,Pan D,Li L,et al. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy[J]. Nanotechnology,2017,28(13):135704 doi: 10.1088/1361-6528/aa6051
    [58] Khan S A,Lampadaris C,Cui A,et al. Highly transparent gatable superconducting shadow junctions[J]. ACS Nano,2020,14(11):14605−14615 doi: 10.1021/acsnano.0c02979
    [59] Aseev P,Fursina A,Boekhout F,et al. Selectivity map for molecular beam epitaxy of advanced III-V quantum nanowire networks[J]. Nano Lett,2018,19(1):218−227
    [60] Desplanque L,Bucamp A,Troadec D,et al. In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate[J]. Nanotechnology,2018,29(30):305705 doi: 10.1088/1361-6528/aac321
    [61] Aseev P,Wang G,Binci L,et al. Ballistic InSb nanowires and networks via metal-sown selective area growth[J]. Nano Lett,2019,19(12):9102−9111 doi: 10.1021/acs.nanolett.9b04265
    [62] Krogstrup P,Ziino N L B,Chang W,et al. Epitaxy of semiconductor-superconductor nanowires[J]. Nature Mater,2015,14(4):400−406 doi: 10.1038/nmat4176
    [63] Güsken N A,Rieger T,Zellekens P,et al. MBE growth of Al/InAs and Nb/InAs superconducting hybrid nanowire structures[J]. Nanoscale,2017,9(43):16735−16741 doi: 10.1039/C7NR03982D
    [64] Kang J H,Grivnin A,Bor E,et al. Robust epitaxial Al coating of reclined InAs nanowires[J]. Nano Lett,2017,17(12):7520−7527 doi: 10.1021/acs.nanolett.7b03444
    [65] Caroff P,Dick K A,Johansson J,et al. Controlled polytypic and twin-plane superlattices in III-V nanowires[J]. Nature Nanotech,2009,4(1):50−55 doi: 10.1038/nnano.2008.359
    [66] Pan D,Song H,Zhang S,et al. In situ epitaxy of pure phase ultra-thin InAs-Al nanowires for quantum devices[J]. Chin Phys Lett,2022,39(5):058101 doi: 10.1088/0256-307X/39/5/058101
    [67] Chang W,Albrecht S M,Jespersen T S,et al. Hard gap in epitaxial semiconductor-superconductor nanowires[J]. Nature Nanotech,2015,10(3):232−236 doi: 10.1038/nnano.2014.306
    [68] Albrecht S M,Higginbotham A P,Madsen M,et al. Exponential protection of zero modes in Majorana islands[J]. Nature,2016,531(7593):206−209 doi: 10.1038/nature17162
    [69] Deng M T,Vaitiekėnas S,Hansen E B,et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system[J]. Science,2016,354(6319):1557−1562 doi: 10.1126/science.aaf3961
    [70] Deng M T,Vaitiekėnas S,Prada E,et al. Nonlocality of Majorana modes in hybrid nanowires[J]. Phys Rev B,2018,98(8):085125 doi: 10.1103/PhysRevB.98.085125
    [71] Song H,Zhang Z,Pan D,et al. Large zero bias peaks and dips in a four-terminal thin InAs-Al nanowire device[J]. Phys Rev Research,2022,4(3):033235 doi: 10.1103/PhysRevResearch.4.033235
    [72] Wang Z,Song H,Pan D,et al. Plateau regions for zero-bias peaks within 5% of the quantized conductance value 2e2/h[J]. Phys Rev Lett,2022,129(16):167702 doi: 10.1103/PhysRevLett.129.167702
    [73] Zeng C,Sharma G,Tewari S,et al. Partially separated Majorana modes in a disordered medium[J]. Phys Rev B,2022,105(20):205122 doi: 10.1103/PhysRevB.105.205122
    [74] Liu D E. Proposed method for tunneling spectroscopy with ohmic dissipation using resistive electrodes: a possible Majorana filter[J]. Phys Rev Lett,2013,111(20):207003 doi: 10.1103/PhysRevLett.111.207003
    [75] Liu D,Zhang G,Cao Z,et al. Universal conductance scaling of Andreev reflections using a dissipative probe[J]. Phys Rev Lett,2022,128(7):076802 doi: 10.1103/PhysRevLett.128.076802
    [76] Zhang S,Wang Z,Pan D,et al. Suppressing Andreev bound state zero bias peaks using a strongly dissipative lead[J]. Phys Rev Lett,2022,128(7):076803 doi: 10.1103/PhysRevLett.128.076803
    [77] Wang Z,Zhang S,Pan D,et al. Large Andreev bound state zero bias peaks in a weakly dissipative environment[J]. Phys Rev B,2022,106(20):205421 doi: 10.1103/PhysRevB.106.205421
    [78] Kang N,Fan D,Zhi J,et al. Two-dimensional quantum transport in free-standing InSb nanosheets[J]. Nano Lett,2018,19(1):561−569
    [79] Zhi J,Kang N,Su F,et al. Coexistence of induced superconductivity and quantum hall states in InSb nanosheets[J]. Phys Rev B,2019,99(24):245302 doi: 10.1103/PhysRevB.99.245302
    [80] Chen Y,Huang S,Pan D,et al. Strong and tunable spin-orbit interaction in a single crystalline InSb nanosheet[J]. npj 2D Mater Appl,2021,5(1):3 doi: 10.1038/s41699-020-00184-y
    [81] Xue J,Chen Y,Pan D,et al. Gate defined quantum dot realized in a single crystalline Insb nanosheet[J]. Appl Phys Lett,2019,114(2):023108 doi: 10.1063/1.5064368
    [82] Chen Y,Huang S,Mu J,et al. A double quantum dot defined by top gates in a single crystalline InSb nanosheet[J]. Chinese Phys B,2021,30(12):128501 doi: 10.1088/1674-1056/abff2e
    [83] Zhi J,Kang N,Li S,et al. Supercurrent and multiple Andreev reflections in InSb nanosheet SNS junctions[J]. Phys. Status Solidi B,2019,256(6):1800538 doi: 10.1002/pssb.201800538
    [84] Zhang H,de Moor M W A,Bommer J D S,et al. Large zero-bias peaks in InSb-Al hybrid semiconductor-superconductor nanowire devices[J]. arXiv:2101,1145:6
    [85] Prada E,San-Jose P,de Moor M W A,et al. From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires[J]. Nat Rev Phys,2020,2(10):575−594 doi: 10.1038/s42254-020-0228-y
    [86] Winkler G W,Wu Q S,Troyer M,et al. Topological phases in InAs1−xSbx: from novel topological semimetal to Majorana wire[J]. Phys Rev Lett,2016,117(7):076403 doi: 10.1103/PhysRevLett.117.076403
    [87] Sestoft J E,Kanne T,Gejl A N,et al. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection[J]. Phys Rev Materials,2018,2(4):044202 doi: 10.1103/PhysRevMaterials.2.044202
    [88] Mayer W,Schiela W F,Yuan J,et al. Superconducting proximity effect in InAsSb surface quantum wells with in situ Al contacts[J]. ACS Appl Electron Mater,2020,2(8):2351−2356 doi: 10.1021/acsaelm.0c00269
    [89] Wen L,Pan D,Liu L,et al. Large-composition-range pure-phase homogeneous InAs1-xSbx nanowires[J]. J. Phys. Chem. Lett.,2022,13(2):598−605 doi: 10.1021/acs.jpclett.1c04001
    [90] He J,Pan D,Yang G,et al. Nonequilibrium interplay between Andreev bound states and Kondo effect[J]. Phys Rev B,2020,102(7):075121 doi: 10.1103/PhysRevB.102.075121
    [91] Cao Z,Liu D E,He W X,et al. Numerical study of PbTe-Pb hybrid nanowires for engineering Majorana zero modes[J]. Phys Rev B,2022,105(8):085424 doi: 10.1103/PhysRevB.105.085424
    [92] Jiang Y,Yang S,Li L,et al. Selective area epitaxy of PbTe-Pb hybrid nanowires on a lattice-matched substrate[J]. Phys Rev Materials,2022,6(3):034205 doi: 10.1103/PhysRevMaterials.6.034205
    [93] Jung J,Op het Veld R L M,Benoist R,et al. Universal platform for scalable semiconductor‐superconductor nanowire networks[J]. Adv Funct Mater,2021,31(38):2103062 doi: 10.1002/adfm.202103062
    [94] Kanne T,Marnauza M,Olsteins D,et al. Epitaxial Pb on InAs nanowires for quantum devices[J]. Nature Nanotech,2021,16(7):776−781 doi: 10.1038/s41565-021-00900-9
    [95] Bjergfelt M S,Carrad D J,Kanne T,et al. Superconductivity and parity preservation in as-grown In islands on InAs nanowires[J]. Nano Lett,2021,21(23):9875−9881 doi: 10.1021/acs.nanolett.1c02487
    [96] Kousar B,Carrad D J,Stampfer L,et al. InAs/MoRe hybrid semiconductor/superconductor nanowire devices[J]. Nano Lett,2022,22(22):8845−8851 doi: 10.1021/acs.nanolett.2c02532
    [97] Hyart T,Van Heck B,Fulga I C,et al. Flux-controlled quantum computation with Majorana fermions[J]. Phys Rev B,2013,88(3):035121 doi: 10.1103/PhysRevB.88.035121
    [98] Vaitiekėnas S,Whiticar A M,Deng M T,et al. Selective-area-grown semiconductor-superconductor hybrids: a basis for topological networks[J]. Phys Rev Lett,2018,121(14):147701 doi: 10.1103/PhysRevLett.121.147701
    [99] Krizek F,Sestoft J E,Aseev P,et al. Field effect enhancement in buffered quantum nanowire networks[J]. Phys Rev Materials,2018,2(9):093401 doi: 10.1103/PhysRevMaterials.2.093401
    [100] Op het Veld R L M,Xu D,Schaller V,et al. In-plane selective area InSb-Al nanowire quantum networks[J]. Commun Phys,2020,3(1):59 doi: 10.1038/s42005-020-0324-4
    [101] Pan D,Wang J Y,Zhang W,et al. Dimension engineering of high-quality InAs nanostructures on a wafer scale[J]. Nano Lett,2019,19(3):1632−1642 doi: 10.1021/acs.nanolett.8b04561
    [102] Zhang H,Liu D E,Wimmer M,et al. Next steps of quantum transport in Majorana nanowire devices[J]. Nat Commun,2019,10(1):5128 doi: 10.1038/s41467-019-13133-1
    [103] Cao Z, Chen S, Zhang G, et al. Recent progress on Majorana in semiconductor-superconductor heterostructures engineering and detection[J]. arXiv: 2206.06916 (2022)
  • 加载中
图( 6)
计量
  • 文章访问数:  147
  • HTML全文浏览数:  147
  • PDF下载数:  2
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-01-08
  • 刊出日期:  2023-03-15

高质量半导体-超导体纳米线原位分子束外延和低温量子输运研究进展

    通讯作者: Tel: (010)82304998; E-mail: jhzhao@semi.ac.cn
  • 1. 中国科学院半导体研究所半导体超晶格国家重点实验室 北京 100083
  • 2. 中国科学院大学材料科学与光电技术学院 北京 100049

摘要: 局域环境和量子比特之间的相互作用引起的量子退相干是目前限制量子计算发展的主要技术瓶颈。基于马约拉纳零能模的拓扑量子计算通过将量子信息非局域地存储于两个空间分离的马约拉纳零能模及其拓扑结构中,实现对局域噪音的免疫,有望从物理层面解决量子退相干问题。强自旋轨道耦合窄禁带半导体与超导体构成的异质结纳米线是研究马约拉纳零能模和拓扑量子计算的理想实验平台。本文综述了近年来高质量半导体-超导体纳米线的原位分子束外延制备和低温量子输运研究进展,并对半导体-超导体纳米线拓扑量子计算研究进行了展望。

English Abstract

  • 量子计算科学是近年来物理学领域最活跃的研究前沿之一,它开拓了与经典方式具有本质区别的全新的信息处理模式。为了实现量子计算,物理学家们已提出了基于冷原子、超导、离子阱、金刚石氮空位色心以及半导体量子点等多种体系的量子比特设计方案[1-6]。然而,研究表明,存储在量子比特中的信息极易受到局域环境的影响,造成量子退相干,导致信息出错甚至丢失[7]。同时,传统电子计算机的一些纠错方案因量子不可克隆原理对量子计算机来说也不适用。因此,物理学家们一直在寻找一种容错能力强的量子比特设计方案。基于马约拉纳零能模的拓扑量子计算是近年来提出的有望从物理层面解决量子退相干问题的重要方案[8-10]

    针对马约拉纳费米子的探测,人们已提出了基于拓扑绝缘体-超导体[11-13]、掺杂的拓扑绝缘体[14]、半导体-超导体[15-16]、磁性原子链-超导体[17]、量子反常霍尔绝缘体-超导体[18,19]及铁基超导体[20-21]等系统的多种具体方案。其中,2010年,马里兰大学的Das Sarma课题组[15]和魏兹曼科学研究所的Oreg课题组[22]提出,在磁场辅助下,用s-波超导体与具有强自旋轨道耦合的半导体纳米线(如InAs或InSb)可形成p-波超导,也即一个一维拓扑超导体,在纳米线两端会产生一对马约拉纳零能模。该方案一经提出便引起了人们极大地关注,原因主要是其原理简单,而半导体又易于调控,人们也已提出了多种马约拉纳零能模的读写和编织理论方案[23-26]

    基于上述理论预言,2012年,荷兰代尔夫特理工大学的Kouwenhoven团队、瑞典隆德大学徐洪起团队以及以色列魏兹曼科学研究所的Heiblum团队等分别在实验上探测到半导体-超导体纳米线中存在零能态,与马约拉纳理论预言部分吻合[27-29]。然而,这些实验中InAs和InSb半导体纳米线上的超导金属采用的是传统的非外延的沉积方法进行制备。对于这种非原位外延方式得到的半导体-超导体异质结纳米线,由于界面处难以避免外来杂质的存在,导致在半导体近邻处的超导能隙中存在大量的低能态,也称为软能隙(soft gap),这些低能态会造成准粒子中毒和拓扑量子比特的退相干。此外杂质的存在也会产生一些拓扑平庸的安德列夫束缚态,在微分电导和约瑟夫森效应的测量中,可以表现出类似马约拉纳零能模的实验信号,干扰对实验的理解和真正的马约拉纳费米子的寻找。理论研究表明,上述界面的杂质源于半导体纳米线和超导体之间的界面无序,以及由此导致的化学势和两种材料间耦合的空间不均匀性[30-31]。因此,获得原子级平整的半导体-超导体界面,是人们在该体系获得高质量硬超导能隙(hard gap),并实现稳定可靠的马约拉纳束缚态的重要基础。

    在窄禁带半导体纳米线侧壁上外延超导金属,获得原子级平整的半导体-超导体界面需要特殊的生长环境,主要包括:(1)异质结的生长需要在超高真空下进行,从而避免外来杂质对异质结形成掺杂,进而影响量子器件的性能;(2)超导金属在半导体纳米线上的外延需尽可能的在真空中原位进行,从而避免样品因暴露大气对界面造成污染;(3)超导金属在半导体纳米线上的外延需在低温进行,从而减少超导金属的原子在纳米线表面的迁移以及界面处原子互扩散对异质结界面质量的影响。

    分子束外延(MBE)是当今制备方法中对样品生长与品质控制最为精确的生长技术,生长薄膜时的厚度控制水平可达到一个原子层甚至亚原子单层的精度。MBE系统具有极高的真空生长环境,系统上多个独立源炉提供的高纯源可以用于纳米线和超导金属的原位生长。此外,MBE操作器(样品架)的位置及转速可控,从而可以控制超导金属在纳米线的特定晶面上进行外延。因此,发展出半导体-超导体纳米线的原位MBE制备技术,对基于半导体-超导体纳米线的拓扑量子计算研究极为关键。本文介绍了近年来高质量半导体纳米线的MBE生长、高质量半导体-超导体纳米线的原位MBE制备以及半导体-超导体纳米线的低温量子输运性质。

  • 利用MBE生长出高质量半导体纳米线是获得高质量半导体-超导体纳米线的基础。2007年,韩国光州科技学院的Song等首次利用MBE制备出了InAs纳米线[32]。随后,慕尼黑工业大学[33,34]、以色列魏兹曼科学研究所[35]、丹麦哥本哈根大学[36]、加拿大麦克马斯特大学[37]及中科院上海技术物理研究所[38]等单位也报道了InAs纳米线的MBE制备。如图1所示,这些InAs纳米线主要采用自组织生长(图1(a))以及利用金属作为催化剂催化制备(图1(b))。对于体材料,InAs的结构为立方闪锌矿。对于InAs纳米线,如图1(c)及(d)所示,由于闪锌矿和纤锌矿的形核能接近,人们制备的纳米线为闪锌矿和纤锌矿的混合相,纳米线中还会出现大量的层错及孪晶缺陷。高质量纯相InAs纳米线的MBE制备一直是一个难题。为了解决这一难题,如图1(e)-(h)所示,作者采用Ag作催化剂,通过改变纳米线生长方向获得了纯纤锌矿及纯闪锌矿结构的高质量InAs纳米线[39-41]。此外,作者发现InAs纳米线的晶体结构特别是晶体质量与其直径紧密相关:小直径的纳米线为纯纤锌矿结构;随着直径增加,结构转变为纤锌矿和闪锌矿的混合相。如图1(i)和(j)所示,通过调控Ag催化剂的直径,在Si衬底上可以制备出直径可调的超细InAs纳米线,纳米线直径可细至约10 nm[39]。详细的透射电镜分析表明,超细的InAs纳米线为纯纤锌矿结构,无层错及孪晶缺陷。北京大学陈清团队将这种纯相超细的InAs纳米线制成场效应晶体管,底栅器件开关比达106,顶栅器件开关比高达108 [39,42-43]

    图2所示,北京大学徐洪起团队对上述纯相单晶InAs纳米线进行了低温磁阻测量以及耦合多量子点器件性能测量[44-52]。如图2(a)和(b)所示,根据InAs纳米线的低温磁阻数据,可以提取出InAs纳米线的自旋弛豫长度为80-100 nm,表明InAs纳米线具有强的自旋轨道耦合,可以用来研究基于强自旋轨道耦合的量子比特及量子芯片[44]。如图2(c)所示,通过进一步测试InAs纳米线器件在开态区域的能谱,证明器件可以进行Fabry-Perot干涉相关研究[45]。之后,如图2(d)和(e)所示,他们利用这种高质量InAs纳米线,结合宽度为30 nm、周期为60 nm左右的指栅阵列,构建了耦合多量子点器件,并依次实现了高度可控的单量子点、双量子点、三量子点及四量子点[47-49]。如图2(f)所示,他们还在InAs纳米线双量子点中采用泡利自旋阻塞研究了InAs纳米线量子点中的自旋弛豫机制,确定了自旋-轨道耦合场的空间指向,揭示了Rashba和Dresselhaus耦合机制对自旋-轨道耦合场的贡献[50]。最近,如图2(g)和(h)所示,他们还将两根高质量的InAs纳米线通过金属桥进行电容耦合,从而构建出了带有电荷探测器的双量子点器件[51-52]。实验证明电荷探测器具有非常高的灵敏度,能够在量子点电流难以探测的区域工作,电子在双量子点之间的传输耦合可以被电荷探测器精准捕获。

    与InAs相比,InSb晶格参数更大,与常规衬底具有更大的晶格失配。因此,人们一直无法在衬底上直接外延出InSb纳米线。2008年,瑞典隆德大学Caroff等发明了换源生长工艺,利用金属有机化学气相外延(MOVPE)在InP/InAs纳米线轴向上生长出了InSb纳米线[53]。2009年,意大利比萨高等师范学院及荷兰埃因霍芬理工大学等单位陆续采用化学束外延(CBE)和金属有机化学气相沉积(MOCVD)结合换源生长工艺制备出了InSb纳米线[54-55]。随后,人们也利用MBE结合换源生长工艺,开展了InSb纳米线的制备。由于MBE生长InSb纳米线的窗口较窄,生长难度较大,相关研究报道较少。2016年,作者利用MBE,采用换源生长工艺,在InAs纳米线轴向上进行了InSb纳米线的外延。分别利用Ag以及In做催化剂,在InAs纳米线轴向上均外延出了高质量的InSb单晶纳米线[56,57]。2020年,哥本哈根大学Krogstrup等采用Au作催化剂,利用MBE在InAs纳米线轴向上外延出了InSb纳米线[58]。最近,人们也利用MBE在不同衬底上进行了平面InSb纳米线的选区外延生长[59-61]。目前,受制于高质量InSb纳米线的制备难题,人们在InSb纳米线上开展超导体的原位外延研究也非常有限。因此,接下来,本文将重点介绍人们在InAs纳米线侧壁开展的超导体的原位外延及输运性质研究。

  • 2015年,丹麦哥本哈根大学的Krogstrup等利用MBE国际上首次在InAs纳米线上实现了Al的低温原位外延生长。Al的外延温度为−30℃。低温原位外延可以显著改善InAs纳米线和Al壳层的界面质量[62]。2017年,尤利希研究中心Peter-Grunberg第九研究所的Güsken等在MBE自组织生长的InAs纳米线(结构为纤锌矿及闪锌矿的混合相)上也开展了Al的原位外延[63]。与此同时,以色列魏兹曼科学研究所的Kang等在MBE生长的断面分别为圆形和六边形的InAs纳米线上原位外延了Al[64]。以上是早期报道超导金属在InAs纳米线侧壁进行原位外延的三个课题组,他们使用的InAs纳米线的共同之处是直径较粗,约40 nm到150 nm(大部分~100 nm);此外,这些大直径的纳米线中含有大量的层错及孪晶等缺陷[62-65]。受制于InAs纳米线的晶体质量,人们一直难以获得原子级平整的界面。

    为了获得高质量的InAs-Al纳米线,作者在纯相超细InAs纳米线侧壁开展了Al的原位外延生长。InAs和Al的晶格失配很大,即使是体材料闪锌矿结构的InAs和Al的晶格失配也达到26%。因此,Al在InAs纳米线侧壁以岛状生长模式生长,难以获得连续的壳层。为了解决这一问题,作者对MBE设备进行了多次升级改造,发展了低温原位外延技术,目的是增加InAs纳米线侧壁Al的成核密度并减小Al原子的迁移率。作者发现,当Al的外延温度降至−10℃时,在InAs纳米线侧壁可以得到连续的Al壳层,但其表面较粗糙,且Al壳层里含有许多晶界。进一步,如图3(a)-(g)所示,将Al的外延温度降低到约−40℃时,在InAs纳米线侧壁成功获得了连续的Al壳层。壳层表面光滑、连续性好。特别是,沿不同晶向生长的超细InAs纳米线(包括<111>、<21-1>、<13-1>、<01-1>等)侧壁均可以外延出质量很好的Al壳层。InAs纳米线直径及Al壳层的厚度均可调,InAs纳米线直径调节范围为~10 nm−30 nm,Al壳层的厚度可以从15 nm调节到5 nm。如图3(h)-(k)所示,详细的TEM表征及能谱分析表明,InAs和Al均具有高的晶体质量,InAs-Al界面达到原子级平整[66]

  • 如上文所述,哥本哈根大学Krogstrup等发现利用低温原位外延技术的确可以显著改善InAs纳米线和Al壳层的界面质量[62]。因此,他们在InAs-Al纳米线中观察到了硬超导能隙,解决了早期人们遇到的软能隙问题[67]。此外,他们也加工了InAs-Al纳米线库伦岛器件,发现库伦峰间随磁场震荡的能量振幅与器件长度存在指数衰减关系。还将纳米线与量子点相结合,用后者作为一个探针,研究了从安德列夫束缚态向马约拉纳零能模转变的拓扑相变过程等[68-70]。然而,由于他们采用的InAs纳米线直径大部分维持在100 nm左右。这个直径一方面会使得纳米线中出现大量的孪晶等缺陷,另一方面也会导致半导体内多个一维的子能带被占据,致使Kiteav Chain物理图像更加复杂。这两个因素使得他们至今在输运上仍未观察到量子化的零偏压电导平台,他们观察到的零偏压电导峰的高度约为4% 2e2/h[67]

    与之对应,作者在纯相超细InAs纳米线侧壁实现了Al的原位外延,超细InAs纳米线的直径仅为上述纳米线直径的三分之一到四分之一。这种超细InAs纳米线一方面具有极高的晶体质量,解决了上述团队遇到的InAs纳米线存在层错和孪晶缺陷的问题;另一方面,超细的InAs纳米线也可以确保InAs-Al异质结纳米线具有小的直径。直径更细的纳米线会带来更大的子能带间距以及更少的占据数,甚至有望达到单一子能带占据的极限。清华大学张浩团队对这种InAs-Al纳米线样品进行了低温输运测量,如图3(l)-(n)所示,在纯相细InAs-Al纳米线中测得了硬超导能隙、接近量子化的零偏压电导峰(零偏压电导峰的高度约为80% 2e2/h)、双电子(库珀对)周期的库伦阻塞及库仑阻塞峰随磁场从双电子到单电子的演变[66]。该实验工作首次在材料生长上探索了马约拉纳纳米线研究中的一个新的实验维度,即更细的纳米线直径,为接下来实现单一子能带占据(从准一维到一维)的纳米线系统做了铺垫。

    在上述工作基础上,作者对InAs-Al纳米线样品质量进行了优化,清华大学张浩团队将InAs-Al纳米线加工成了如图4(a)所示的四端隧穿势垒可调的多功能量子器件。在InAs-Al纳米线中观察到准量子化电导平台,特别是如图4(b)所示,观察到接近量子化范围内的零偏压电导谷到零偏压电导峰的转变[71]。这种谷到峰的转变对应着理论预言的(准)马约拉纳零能模的自旋选择性,在以往实验中从未有过证据体现。

    最近,在大幅提高超细InAs-Al纳米线材料和器件质量后,如图5(a)-(d)所示,张浩团队又观测到量子化零偏压电导峰,该电导峰在量子化附近(5%精度范围内)形成一个电导平台[72]。这是首次观测到随三个实验参数变化(磁场和两个门电极)都可形成平台的“量子化岛”。特别是,零偏压电导的量子化在多个维度上(磁场、化学势和隧穿势垒)均能够保持一定的稳定性,说明超细纳米线凭借直径的减小的确抑制了器件的缺陷态密度,使得磁场、化学势和隧穿势垒三个维度组成的参数空间内量子化零偏压电导的存在区间得到了扩展,实验结果同马约拉纳或准马约拉纳的预言吻合[73]。此外,由于轨道效应被显著抑制,这使得超细纳米线中的转角磁场测试成为可能。如图5(e)所示,他们成功观测到转角范围为60°左右的量子化平台,以往实验中此类测试在很小的旋转角下就会导致失超而无法实现。

    目前,半导体-超导体纳米线马约拉纳零能模的另外一个研究焦点是如何在实验上区分马约拉纳零模和安德列夫束缚态,因为两者在输运上皆可体现为零偏压电导峰。如图6(a)-(b)所示,清华大学刘东等理论预言强耗散电阻会使得安德列夫束缚态所导致的零偏压电导峰在低温下劈裂,而马约拉纳零偏压电导峰将会继续存在。最近他们还量化了不同情况下的标度率,其核心思想是利用耗散电极引入的电子和环境玻色子的相互作用重整化效应,使得马约拉纳输运信号和其它拓扑平庸态的输运信号产生完全不同的标度行为和温度电压依赖关系[74,75]。在此理论预言基础上,张浩团队实验制备出了基于InAs-Al纳米线的马约拉纳量子耗散器件(图6(c))。具体在InAs-Al纳米线体系中引入大电阻金属耗散电极(耗散电阻),并对具有不同耗散电阻以及没有耗散电阻的多个器件进行了隧穿谱研究及对比。观察到由耗散电阻引起的明显的环境库仑阻塞现象,证实了耗散电阻的耗散效果。如图6(d)所示,当耗散电阻相对较大时(> 5.42 kΩ),环境库仑阻塞相应较强,此时几乎所有由安德烈夫束缚态等平庸机制形成的零偏压电导峰在低温下均被抑制,劈裂为两个非零能的电导峰[76]。如图6(e)和(f)所示,将耗散电阻调小至~2.7 kΩ时,低温下(<300 mK)零偏压电导峰重新出现,并且其电导峰的高度随温度升高而升高,表现出明显的非费米液体行为[77]。这种InAs-Al纳米线量子耗散器件可以作为一种“马约拉纳过滤器”,能够有效过滤掉缺陷引发的平庸安德列夫束缚态,有望更高效地找到马约拉纳零能模的相关信号。“量子耗散”本身是一种介观体系中的多体效应,源自于电子在耗散电极中的相位相干,这种量子耗散器件为探究环境库伦阻塞效应等多体效应,提供了一个新的基于III-V族半导体-超导体纳米线的平台。

  • 在理论预言后的十余年里,人们在用于拓扑量子计算的半导体-超导体纳米线外延制备及低温量子输运性质研究方面均取得了诸多进展。发展出了半导体-超导体纳米线的低温原位外延技术,改善了半导体-超导体纳米线的界面质量,解决了早期实验中出现的软能隙问题,实现了硬超导能隙[62,67-70]。发展出了超细半导体-超导体纳米线的低温原位外延技术,制备出了纯相超细InAs-Al纳米线,获得了原子级平整的异质结界面,实现了硬超导能隙,特别是在InAs-Al纳米线中观察到准量子化零偏压电导平台,以及理论预言的零偏压电导谷向零偏压电导峰的转变[66,71-72]。此外,从理论上提出了甄别安德列夫束缚态的新方法---量子耗散器件,并在实验上制备了InAs-Al纳米线马约拉纳量子耗散器件,能够有效过滤掉缺陷引发的平庸安德列夫束缚态,有助于实现未来对马约拉纳零模的实验验证[74-77]。尽管取得了上述诸多进展,基于半导体-超导体纳米线的拓扑量子计算研究仍然面临诸多挑战,在半导体及超导体的材料筛选、半导体-超导体纳米线网络的制备以及样品输运性质测量等方面需要进一步深入和拓展。

    (1) 半导体及超导体的材料筛选

    人们已在InAs-超导体纳米线体系取得了一系列研究进展。与InAs相比,InSb具有更高的电子迁移率、更大的朗德g因子以及更强的自旋轨道耦合相互作用等优异性质[53-57,78-83]。因此,获得马约拉纳零能模所需的“拓扑超导相”理论上更易形成,这也是早期人们选择InSb纳米线开展马约拉纳费米子探测的一方面原因[27-28]。然而,如前文所述,MBE生长InSb纳米线的窗口较窄,生长难度较大。现有文献报道的InSb-超导体纳米线几乎全部采用MOCVD(生长InSb纳米线)联合MBE(低温外延超导体)的方式制备[84-85]。这种方式工序复杂,在MBE外延超导体之前需要对InSb纳米线的表面进行清洗,无法避免清洗过程对纳米线表面造成的损伤。InSb-超导体纳米线的全MBE低温原位外延制备可以有效解决这一问题,亟待深入研究。此外,理论及实验结果表明三元InAsSb-超导体纳米线也是一种优异的用于拓扑量子计算研究的材料[86-90],值得深入探索。最近,人们也开展了新的马约拉纳纳米线体系的寻找[91,92]

    在半导体纳米线上外延超导金属,超导金属的选择亦至关重要。其一,超导金属与半导体纳米线晶格失配越大,越难实现高质量的外延;其二,超导金属大的超导能隙,可以使马约拉纳束缚态更好地孤立在零能量处,可以对其有更好的保护;其三,在半导体纳米线里实现马约拉纳零能模需要外加磁场,同时还不能破坏超导,所以超导金属临界场越高对实现马约拉纳零能模越有利,这样能确保在施加磁场时超导性依然能稳定存在。目前,大多数课题组在纳米线侧壁选用Al作为超导体[62-64, 66,84-85]开展外延研究。最近,也有课题组在陆续探索其它超导体的外延,这些超导体包括:Pb[92-94]、Sn[58]、In[95]及MoRe[96]等。未来需要继续探寻具有高临界温度、高临界磁场及与半导体晶格更匹配的超导体。

    (2) 半导体-超导体纳米线网络制备

    马约拉纳零能模受系统拓扑保护,因此具有抗环境干扰的鲁棒性。通过交换两个马约拉纳费米子的位置可以验证其所满足的非阿贝尔统计性质这一重大科学问题,并由此实现拓扑量子比特的逻辑门操作,即所谓的“编织”操作。单根纳米线器件由于其一维属性不适合进行此类编织操作,这是因为当两个马约拉纳费米子相互接近的时候不可避免会发生“碰撞”,进而导致湮灭而破坏量子信息。理论结果表明,在“T”形及双“T”形等纳米线交叉结构特别是纳米线网络中可以避免“碰撞”,从而实现编织操作[23,97]。目前,人们利用平面选区外延技术已开展了InAs-Al及InSb-Al等纳米线网络的制备[59,61,98-100]。然而,InAs和InSb与衬底间大的晶格失配会引起半导体纳米线网络中出现大量的位错及层错等缺陷。半导体纳米线网络的质量已成为制约异质结纳米线网络质量的关键因素。为了解决这一问题,作者提出了基于立式二维单晶纳米片的方案,用以解决半导体的质量问题[56,101]。下一步计划基于这种立式二维单晶纳米片制备高质量半导体-超导体纳米线网络。

    (3)样品输运性质测量

    探索马约拉纳零能模的关联性输运和非局域效应也是亟待开展的工作。一对马约拉纳零能模存在受拓扑保护的非局域关联,此性质也是拓扑量子计算对局域扰动免疫的物理基础。然而,目前为止还没有实验结果稳定展示马约拉纳零能模的关联。对于马约拉纳零能模的关联已有多种成熟实验方案给出[102-103],包括纳米线两端的同时隧穿输运探测、交叉安德列夫反射的非局域输运测试,以及非局域栅极调控等。关联性研究是实现拓扑量子比特的先导性研究,将明确给出“编织”方案的实验可行性,并预测比特寿命、相干时间和马约拉纳零能模空间尺寸等重要参数。

    在平庸安德列夫束缚态与马约拉纳零能模的甄别方面,目前实验上观察到的无论是大耗散电阻对零偏压电导峰的抑制,还是小耗散电阻下,零偏压电导峰高度随温度升高而升高的非费米液体行为,均是由安德烈夫束缚态引起。对于理论指出的随温度降低而趋近一个量子电导的马约拉纳零偏压电导峰还未找到。因此,接下来需要进一步调节耗散电极电阻值,探索随温度降低而趋近一个量子电导的马约拉纳零偏压电导峰。建立完善的区分马约拉纳零偏压电导峰与安德烈夫束缚态等平庸机制的实验探测方法。

    总之,拓扑量子计算将量子比特置于系统拓扑物态的保护之下,可以屏蔽局部外界扰动带来的退相干,也为单个逻辑量子比特的构造提供了一种工艺上相对简便、物理上稳定可靠的技术方案。基于半导体-超导体纳米线的拓扑量子计算实现已具有较为清晰的路线图和具体的实现方案。制备出高质量的半导体-超导体纳米线及纳米线网络,在纳米线网络上发展出利用马约拉纳隐形传态进行编织操作的技术,有望实现拓扑量子比特数从0到1的突破,为实验验证非阿贝尔任意子统计以及最终实现拓扑量子计算机打下坚实基础。

参考文献 (103)

目录

/

返回文章
返回