[1] |
Knudsen M. Eine revision der gleichgewichtsbe- dingung der gase[J]. Thermische Molekularströ mung[J]. Annalen Der Physik,1909,336(1):205−229
|
[2] |
ZENG P,WANG K,AHN J,et al. Thermal transpiration based pumping and power generation devices[J]. Journal of Thermal Science and Technology,2013,8(2):370−379 doi: 10.1299/jtst.8.370
|
[3] |
Liu J,Gupta N K,Wise K D,et al. Demonstration of motionless knudsen pump based micro-gas chromatography featuring micro-fabricated columns and on-column detectors[J]. Lab Chip,2011,11(20):3487−3492 doi: 10.1039/c1lc20511k
|
[4] |
Martini-Laithier V,Graur I,Bernardini S,et al. Ammonia detection by a novel pyrex microsystem based on thermal creep phenomenon[J]. Sensors and Actuators B:Chemical,2014,192:714−719 doi: 10.1016/j.snb.2013.10.120
|
[5] |
Pennetta R,Xie S,Russell P S. Tapered glass-fiber microspike: high-Q flexural wave resonator and optically driven knudsen pump[J]. Phys Rev Lett,2016,117(27):273901 doi: 10.1103/PhysRevLett.117.273901
|
[6] |
Bell A,Ehringer W D,McNamara S. Scavenged body heat powered infusion Pump[J]. Journal of micromechanics and microengineering,2013,23(11):114019 doi: 10.1088/0960-1317/23/11/114019
|
[7] |
Sun H,Li D,Zhang D et al. Corrections of thermal transpiration in capacitance diaphragm gauges[J]. Chinese Journal of Vacuum Science and Technology,2009,29(01):16−20 (孙海,李得天,张涤新,等. 电容薄膜规热流逸效应修正方法研究[J]. 真空科学与技术学报,2009,29(01):16−20(in chinese) doi: 10.13922/j.cnki.cjovst.2009.01.019
Sun H, Li D, Zhang D et al. Corrections of thermal transpiration in capacitance diaphragm gauges[J]. Chinese Journal of Vacuum Science and Technology, 2009,29(01):16-20 ( doi: 10.13922/j.cnki.cjovst.2009.01.019
|
[8] |
Qin R,Meng S,Wang B et al. Analyses on characteristics of flow rate and pressure for multistage thermal transpiration based vacuum pump[J]. Chinese Journal of Vacuum Science and Technology,2022,42(11):1−7 (覃日帅,蒙仕达,王博韬,等. 多级热流逸式真空泵流量与压力特性分析[J]. 真空科学与技术学报,2022,42(11):1−7(in chinese)
Qin R, Meng S, Wang B et al. Analyses on characteristics of flow rate and pressure for multistage thermal transpiration based vacuum pump[J]. Chinese Journal of Vacuum Science and Technology, 2022,42(11):815-821
|
[9] |
Wang B,Lu W,Xu K et al. Effect of thermal transpiration on vacuum pumping characteristics: a theoretical study[J]. Chinese Journal of Vacuum Science and Technology,2017,37(09):866−872 (王博韬,卢苇,徐昆,等. 热流逸效应的抽真空特性分析[J]. 真空科学与技术学报,2017,37(09):866−872(in chinese) doi: 10.13922/j.cnki.cjovst.2017.09.05
Wang B, Lu W, Xu K et al. Effect of thermal transpiration on vacuum pumping characteristics: a theoretical study[J]. Chinese Journal of Vacuum Science and Technology, 2017,37(09):866-872 ( doi: 10.13922/j.cnki.cjovst.2017.09.05
|
[10] |
Lu W,Xing P,Wang B. Impact of cross-section symmetry of micro-channels on its conductance in thermal transpiration vacuum pump: a theoretical analysis[J]. Chinese Journal of Vacuum Science and Technology,2020,40(05):478−484 (卢苇,邢鹏浩,王博韬. 热流逸效应下不同截面形状微通道的流导特性分析[J]. 真空科学与技术学报,2020,40(05):478−484(in chinese) doi: 10.13922/j.cnki.cjovst.2020.05.15
Lu W, Xing P, Wang B. Impact of cross-section symmetry of micro-channels on its conductance in thermal transpiration vacuum pump: a theoretical analysis[J]. Chinese Journal of Vacuum Science and Technology, 2020,40(05):478-484 ( doi: 10.13922/j.cnki.cjovst.2020.05.15
|
[11] |
Wang X,Zhang Z,Zhang W et al. Study of transmission characteristics of gas in a rectangular Knudsen pump[J]. Vacuum & Cryogenics,2020,26(01):73−81 (王晓伟,张志军,张文青,等. 矩形微通道Knudsen泵中的气体传输特性研究[J]. 真空与低温,2020,26(01):73−81(in chinese) doi: 10.3969/j.issn.1006-7086.2020.01.012
Wang X, Zhang Z, Zhang W et al. Study of transmission characteristics of gas in a rectangular Knudsen pump[J]. Vacuum & Cryogenics, 2020,26(01):73-81 ( doi: 10.3969/j.issn.1006-7086.2020.01.012
|
[12] |
White C,Borg M K,Scanlon T J,et al. Dsmcfoam+: An openfoam based direct simulation monte carlo solver[J]. Computer Physics Communications,2018,224:22−43 doi: 10.1016/j.cpc.2017.09.030
|
[13] |
Zhang Y,Bi H,Fan X et al. Numerical simulation of flow conductivity of vacuum pipeline under different flow regimes[J]. Chinese Journal of Vacuum Science and Technology,2022,42(04):276−281 (张一聪,毕海林,樊翔,等. 不同流态下真空管道流导值的数值模拟研究[J]. 真空科学与技术学报,2022,42(04):276−281(in chinese)
Zhang Y, Bi H, Fan X et al. Numerical simulation of flow conductivity of vacuum pipeline under different flow regimes[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(04):276-281 (
|
[14] |
Bird. Molecular gas dynamics and the direct simulation of gas flows[M]. Clarendon Press, Oxford University Press, 2003:1-458.
|
[15] |
沈青. 稀薄气体动力学[M]. 国防工业出版社, 2003:1-321.
|
[16] |
Wang X,Zhang Z,Zhang W,et al. Numerical simulation of thermal edge flow in ratchet-like periodically patterned micro-channels[J]. International Journal of Heat and Mass Transfer,2019,135:1023−1038 doi: 10.1016/j.ijheatmasstransfer.2019.02.006
|
[17] |
Han F,Wang X,Zhao F,et al. Numerical investigation of gas separation via thermally induced flows in ratchet-like patterned microchannels[J]. International Journal of Thermal Sciences,2022,172:107280 doi: 10.1016/j.ijthermalsci.2021.107280
|